
Laboratório VISGRAF
Instituto de Matemática Pura e Aplicada

A Compression Scheme for Volumetric Data Based on the
Local Cosine Transform

Anselmo Cardoso de Paiva, Luiz Velho, Marcelo Gattass

Technical Report TR-02-07 Relatório Técnico

February - 2002 - Fevereiro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.

A Compression Scheme for Volumetric Data Based on the Local Cosine Transform

ANSELMO CARDOSO DEPAIVA 1 3 , LUIS VELHO2, MARCELO GATTASS3

1UFMA–Universidade Federal do Maranh˜ao - CCET - Dep. de Inform´atica
Campus do Bacanga, SN, S˜ao Luis, MA, Brasil

paiva@deinf.ufma.br
2IMPA–Instituto de Matem´atica Pura e Aplicada

Estrada Dona Castorina, 110, 22460 Rio de Janeiro, RJ, Brasil
lvelho@visgraf.impa.br

3TeCGraf - Grupo de Tecnologia em Computac¸ão Gráfica
Rua Marquês de S. Vicente, 225, 22453-980, Gavea, Rio de Janeiro, RJ, Brasil

fpaiva,gattassg@tecgraf.puc-rio.br

Abstract. We propose a new lossy compression scheme for volumetric data based on the local cosine transform.
This method is appropriated for further volume visualization because it provides good compression, minimizes
reconstruction errors, and allows local decompression of the volume. We analyse the compression results and
estimate scheme parameter variations, investigating the adaptivity properties and different space decomposition
arrangements.

1 Introduction

Volumetric datasets are being used in increasing num-
ber, size, and complexity in many engineering and scien-
tific applications. These applications are generally related
to large and complex datasets that need to be submitted
to volume visualization techniques. Volume visualization
techniques have two classical computing problems: long
execution time and large memory requirements. To handle
the execution time requirement, several accelerated render-
ing techniques have been proposed, e.g. [1], [2], and [3].
The memory requirement has received less attention, even
though for some applications, such as seismic analysis, it is
very important. For example, for a resolution of512 3 vox-
els, 134 Mbytes of memory are required if only one byte is
allocated per voxel. Even with the memory cost decreasing,
the size of the application’s datasets never stops increasing.

Compression is very important to the visualization of
large volume data on personal computers or low-end work-
stations with limited memory. What is needed is a method
that allows the user to load a compressed version of the vol-
ume into a small amount of memory and enables the user
to access and visualize it as if the whole uncompressed vol-
ume were present. Such a compression scheme should pro-
vide the local decompression of the data.

1.1 Previous Work

During the first years in the development of volume
visualization techniques, the research efforts were concen-
trated on the search for real-time methods. Only with the
emergence of WWW and distributed applications, the com-

pression of volumetric data start to receive more research
attention.

Ning and Hesselink [4] proposed a method that pro-
vided compression and visualization of volumetric data ba-
sed on vector quantization. The volume is divided in blocks
that are compressed using vector quantization, and can be
directly visualized, without the need of decompression. The
associated visualization process was too expensive for visu-
alizing a compressed volume.

Muraki [5] introduced the use of wavelets to efficiently
approximate volumetric data. Ihm and Park [6] proposed a
scheme for the compression of large volumes, based on the
wavelets transform. The proposed scheme yields high com-
pression rates, and allows random access to the compressed
voxels. This characteristic makes the scheme suited for the
development of volume visualization techniques adapted to
the compressed data structure. Following this work, [7] in-
troduced the use of run-length encoding of the wavelet co-
efficients achieving better compression rates.

In [8] a method was proposed based on the wavelet
transform and on the three-dimensional sub-band transform
code algorithm developed to code video sequences, which
provides fast random access to individual voxels within the
volume and high compression rates. This algorithm has the
problem of a high decoding cost.

The local cosine transform was discovered by several
independent works ([9], [10], [11], [12] and [13]). They
discovered the way to construct smooth orthogonal bases
subordinate to arbitrary partitions of the real line. Malvar
showed in [9] that discrete orthogonal bases with smooth
windows modulated by a Cosine IV basis would be cre-

ated, and Coifman and Meyer [10] rediscovered this re-
sult for continuous time functions. This construction is
also known by different names: Lapped Cosine Transform
(LCT), Lapped Orthogonal Transforms (LOT), Modulated
Lapped Orthogonal Transforms, Time-Domain Aliasing Can-
cellation Filter Banks, Malvar Wavelets, and others.

In [9] the local cosine transforms were used to trans-
form coding, given the reduction of the blocking effects and
transform coding gain similar to DCT. In that work, local
cosine transform was applied to the compression of unidi-
mensional speech signals.

1.2 Contribution

As we can see in the literature, several techniques han-
dling the compression of volumetric data have been recently
emerging. In this paper we propose a new method based
on the local cosine transform of volumetric data, gener-
ating good compression rates, minimizing the reconstruc-
tion errors and being suitable for local volume decompres-
sion. We also investigate various space (time) subdivision
schemes and their reflections on compression results. This
method extend some of the existing methods applied to im-
ages, adding the advantage to incorporate the correlation in
the slices direction.

In the next section, we discuss local cosine bases and
their properties. In section 3 we present our volumetric
compression scheme and discuss some results of applying
such scheme to real datasets. Finally, we present the ob-
tained results in section 4 and provide concluding remarks
in section 5.

2 The Local Cosine Transform

In the study of signal representation with the least pos-
sible correlation, we see that the correlation present in the
signal is mostly local. Thus, the Fourier bases are not well
suitable because their basis functions are non local. More
localization can be obtained by dividing the time axis and
separately computing the Fourier basis for each interval.
This approach has the disadvantage of introducing the so
called border effects. The Fourier basis border effects gen-
erate large coefficients, which are introduced because the
signals analyzed are not, in general, periodic. This fact is
interpreted by the Fourier analysis as a discontinuity or an
abrupt variation in the function. In order to overcome this
problem, we can use trigonometric bases (e.g. cosine) mul-
tiplied by a smooth window function. This way we gain
more local correlation in the signal representation, mini-
mizing the insertion of border effects and, additionally, ob-
taining the freedom to choose the time axis partition that
best represents the signal. In the following sections we
will discuss how to generate the local cosine basis and the
method to search the bases that better represent a signal.

2.1 Local Cosine Basis

Let fIpg be a partition of the time axis in overlapping
intervals, such that:

Ip = [ap � �p; ap+1 + �p+1] (1)

with limp!�1 ap = �1 andlimp!+1 ap = +1, such
thatIp�1 andIp+1 do not intersect each other.

We can define a window functiongp whose support
is Ip, and which has a raising profile on the left sobrepo-
sition subinterval(Op) and a decaying profile on the right
sobreposition subinterval(Op+1), given by

gp(t) =

8>>>><
>>>>:

0 if t =2 Ip;

�
�
t�ap

�p

�
if t 2 Op;

1 if t 2 Cp;

�
�
ap+1�t

�p+1

�
if t 2 Op+1:

(2)

where�(t) is a monotone profile function such that

�(t) =

(
0; if t < �1

1; if t > �1
(3)

8t 2 [�1; 1] �2(t) + �2(�t) = 1 (4)

Now we can define a local basis ofL2(R) as a basis
derived from a Cosine-IV basis ofL2[0; 1] by multiplying a
translation and dilation of each cosine basis function by the
smooth windowgp. The family of local cosine functions(

gp;k(t) = gp(t)

s
2

lp
cos

�
�

�
k +

1

2

�
t� ap

lp

�)
k2N
p2Z

(5)

is an orthonormal basis ofL2(R). The local cosine bases
can be characterized, like wavelet packets, by positionp,
scales, and wavenumberk, supposinglp = f(s).

These bases are composed of functionsgp;k(t) with
compact support[ap � �p; ap+1 + �p+1], as shown in Fig-
ure 1.

Local cosine bases are discretized by replacing the or-
thogonal basis ofL2[0; 1] with a discrete Cosine-IV basis,
and uniformly sampling windowgp. So, if we have a sam-
pled windowgp[n], then the family(
gp;k[n] = gp[n]

s
2

lp
cos

�
�

�
k +

1

2

�
n� ap

lp

�)
0�k<lp

p2Z

(6)

is an orthonormal basis ofl2(Z).
To decompose a functionf in the basis, one must com-

pute the inner products of the function with each discrete

Op+1Op Cp

gp(t)

gp(t) gg
p-1

(t) (t)
p+1

ap
ap ap+ηp ap+1 p+1η+ap+1ap+1 η− p+1η− p

Ip
Ip+1Ip-1

ap
ap ap+ηp ap+1 p+1η+ap+1ap+1 η− p+1η− p

(b)

ap
ap ap+ηp ap+1 p+1η+ap+1ap+1 η− p+1η− p

(a)

(c)

Figure 1: (a) The overlapping intervals spanning the time
axis. (b) Window g(t) and subintervals Op, Cp and Op+1.
(c) The lapped windows gp�1(t), gp(t) and gp+1(t).

basis vector. A fast algorithm introduced in [14] replaces
the calculations of hf; gp;ki by a computation of inner prod-
ucts in the original bases, which can be computed with the
fast DCT-IV algorithm, with a folding procedure.

Suppose we wish to fold a function f across ap, onto
the intervals [ap � �p; ap) and (ap; ap + �p], using the win-
dow function gp, the folded function f f

p
(x)is given by:

ff
p
(x) =

8>>>><
>>>>:

gp(x)f(x) + gp(2ap � x)f(2ap � x)

if x 2 Op

f(x) if n 2 Cp

gp(x)f(x) � gp(2ap+1 � x)f(2ap+1 � x)

if x 2 Op

(7)

The folding operation can be graphically represented
by flipping the modulate function (Figure 2(b)) portion within
the interval [ap � �p; ap] ([ap+1; ap+1 + �p+1]) around the
axis t = ap (t = ap+1)(Figure 2c) and summing the flipped
portion to the function portion supported in the subinterval
[ap; ap + �p] ([ap+1; ap+1 + �p+1]) (Figure 2d), generating
the folded function as shown in Figure 2e.

We can extend the local cosine bases to represent mul-
tidimensional signals. The easiest way is through the use of
tensor products of unidimensional basis elements.

A local cosine basis in the 3D space can be constructed
by partitioning the space R3 into volume intervals f[ap; bp]
� [cq; dq]� [fr; hr]g with arbitrary length lp = bp � ap,
width wq = dq � cq , and depth sr = hr � fr.

2.2 Local Cosine Tree

In the local cosine basis construction we can segment
the time axis into intervals [ap; ap+1] of arbitrary length.
However, Coifman and Meyer [10] showed that restricting
this partition to dyadic size we create a tree structure rep-
resenting all possible time axis partitions. The generated
structure, called Local Cosine Tree, is very similar to the

ap

ap+1

f(t)

(a)

(b)

(c)

(d)

(e)

ηa -p p a +p+1 ηp+1

Figure 2: Graphical representation of the fold operation.(a)
Function f(t) to be folded. (b) The modulated version of
f(t). (c) The flipped portion of the modulated f(t) that
was outside the interval. (d) The portion of f(t) inside the
interval. (e) The flipped portion added to the inside portion
of the f(t).

wavelet packet tree, introduced in [15], and may be used
to search the local cosine basis that is more adapted to the
signal characteristics.

If we consider a time interval [0; T] as the signal ex-
tent, we can divide into in p = 2j intervals, Ip = [ap;j ;

ap+1;j] where ap;j = p2�jT for 0 � p � 2j , which has
length lp = 2�jT . The intervals in which 1 � p � 2j � 2

have support [ap;j � �; ap+1;j + �], defined by window gp;j
given by:

gp(t) =

8>>>><
>>>>:

�
�
t�ap;j

�

�
if t 2 [ap;j � �; ap;j + �];

1 if t 2 [ap;j + �; ap+1;j � �];

�
�
ap+1;j�t

�

�
if t 2 [ap+1;j � �; ap+1;j + �];

0 otherwise:

(8)

If we compute all possible dyadic intervals, we gener-
ate a tree , in which each level j represents a partition of the
signal extent [0; T] into 2j subintervals. Then a local cosine
tree node at level j and position p in this level is generated
by the local cosine family

B
p

j
=

(
gp;j(t)

r
2

2�jT
cos

�
�

�
k +

1

2

�
t� ap;j

2�jT

�)
k2Z

(9)

In order to guarantee that the window overlaps only
with its two adjacent intervals, length lp = ap+1;j � ap;j
must be greater than 2�jT . As in the dyadic partition the

length of an interval in the tree level j is given by lp =

2�jT , we have that the value of � is limited by � � 2�j�1T

or that the maximum tree level is limited by log2

�
T

2�

�
.

To represent a signal we simply need to choose from
the nodes of the local cosine tree a set of intervals that cov-
ers the complete signal extent. This is due to the fact that
any interval Ij;k in the tree can be obtained by the sum of
its two child intervals Ij+1;2k and Ij+1;2k+1. Therefore,
the representation of a signal can be obtained by cutting the
local cosine tree and selecting only intervals associated to
the tree leaves, as illustrated in the Figure 3. The number of
different dyadic local cosine bases is equal to the number
of different subtrees of depth J at most.

B3
4

B2
2 B2

3

B1
0 B1

1

B0

B3
5

Figure 3: An admissible binary tree of local cosine bases.

The local cosine binary tree is extended in two dimen-
sions into a quad-tree which divides the rectangular win-
dow into four smaller windows. In three dimensions, the
generated structure is an octree which divides the volume
window into eight sub-volume windows.

2.3 Best Basis Selection

A local cosine basis divides the time axis into inter-
vals of varying sizes. To adapt the time segmentation to the
variations of the signal time-frequency structures we can
compare different arrangements from the local cosine tree
to choose the one that provides the best signal representa-
tion. By minimizing a concave cost function we can select
from the collection of local cosine bases in the tree, the sub-
set that is the best representation for a signal. The cost of
approximating f in a basis B� is defined by the Schür con-
cave sum

C(f;B�) =

NX
m=1

�

 ��
f; g�
m

���2
kfk2

!
(10)

where

f; gd

m

�
defines the representation of f in the basis

B�, and � is the single concave function.
As examples of cost functions we can mention en-

tropy and concentration in lp. Entropy, given by �(x) =

�x log
e
x, is concave for x � 0. The corresponding cost is

called entropy of the energy distribution, and is given by:

C(f;B) = �

NX
m=1

��hf; gmi��2
kfk

2
log

e

 ��hf; gmi��2
kfk

2

!
(11)

The lp cost, �(x) = x
p

2 for p < 2, is concave for
x � 0. The resulting cost is:

C(f;B) =

NX
m=1

 ��hf; gmi��2
kfk2

!p

2

(12)

If the collection of bases is a tree with finite depth L,
then we can find the best basis by computing the informa-
tion cost of each node of the tree (transform block) and
comparing children to parents starting from the bottom.

The best basis algorithm in 3D computes a cost func-
tion for each volume block. In this work we used as cost
functions threshold, concentration in lp and entropy. The
threshold cost function simply counts how many coefficients
have absolute value above a threshold value �. The con-
centration in lp is obtained by summing the pth powers of
block coefficients, for 0 < p < 2. Finally, the entropy
function used is the norm �l2 log l2. The main idea of the
fast algorithm is that the full local cosine octree is pruned
recursively at each node by comparing its entropy to the
summation of its corresponding children nodes,

if Cost(ParentNode) � [Cost(child1) + Cost(child2)

+Cost(child3) + Cost(child4) + Cost(child5)

+Cost(child6) + Cost(child7) + Cost(child8)]

then
cut off the child branches.

fi

In the beginning, a full binary-based decomposition tree
with a preset maximum decomposition level is produced.
Then, the pruning procedure starts from the leaf nodes to-
wards the root. At the end of this procedure, an optimal
pruned tree is obtained for the given signal, the so called
adaptive binary local cosine basis. The search low com-
plexity is obtained by the fact that each node is visited only
twice. This occurs due to the cost functions’ additive prop-
erty. For a J-levels decomposition of a signal with N = sJ

samples we need just O(N) comparisons.

3 Volumetric Data Compression

The transform based compression methods are com-
monly used for volumetric data with good results. In these

methods, we have three main stages. The first and most im-
portant one, is the transform of the data representation to a
domain, which is more appropriated to the processing of the
following stages. The second and third stages are, respec-
tively, quantization and codification. Essentially the first
stage defines what will be coded in the subsequent stages.

The basic idea is to transform the data such that the
information is concentrated in just a few coefficients , then
we can discard the coefficients near zero, use a few bits
to code the less important coefficients, and concentrate the
representation in most significant coefficients. The trans-
form’s desired properties are: existence of fixed function
basis, existence of efficient computation algorithms, sepa-
rability, reduction of correlation between coefficients, and
good energy compaction properties.

DCT (Discrete Cosine Transform)[16] is one of the
most used transforms for compression. The reason is that
this transform approximates the Karhunem-Loéve transform
which de-correlates all the data values, but is computation-
ally expensive because it is data dependent. To add more
desired properties to the discrete cosine transform and avoid
the introduction of discontinuity artifacts, we will use the
Local Cosine Transform (LCT) described in section 2, which
is a transform with a C1 orthonormal base of compact sup-
port and that generates a representation in scale for the data.
Additionally, this transform has the advantage of adapting
volume partition to data characteristics in the space�frequency
domain.

Figure 4 describes the general flow of the proposed
method, which follows the main structure of a transform
based compression method. The initial and principal stage
is the application of LCT, followed by typical lossy coder
steps: thresholding, removing insignificant coefficients, quan-
tization of the remaining coefficients to restrict them to a
small number of possibilities, and finally encoding the trans-
formed data.

Volume Representation
Local Cosine

DecompositionDecompositions
Volume Choose Quantization Encoded

VolumeEncoding

Figure 4: Overview of the Local Cosine Based Compres-
sion Method.

3.1 Volume Transformation

The initial stage of the compression method is the defi-
nition of a volume partition to apply the LCT. This partition
can be achieved using the Fixed Level approach, which sub-
divides the volume into sub-volumes of equal size (nx �
ny � nz), or using the Best Basis approach, that find an
adaptive representation for the volume. The description of
the volume decomposition must be encoded in such a way

that the decoder will be able to preserve the block arrange-
ment. This is essential to retrieve blocks following any axis
traversal order, an important characteristic to allow the de-
velopment of visualization algorithms based on the com-
pressed data structure.

Using the Fixed Level approach, we specify the dyadic
decomposition level and the sobreposition extension (lap)
that will be used. Based on this choice, the algorithm com-
putes the associated volume partition. We have the vol-
ume decompositions restricted to the dyadic partitions of
the three axis. Therefore a volume of size Nx �Ny �Nz

has 23j blocks in the decomposition level j, each block with
size Nx

2j
�

Ny

2j
� Nz

2j
. For each decomposition block we

apply three one-dimensional local cosine transforms, fold-
ing the contribution of the six neighbors blocks. We can
see this process as the application of a LCT in Nx � Ny

one-dimensional arrays formed by the (i; j) voxel of each
slice in the volume, using 2j intervals. This is followed by
the application of the same transform to the columns and
lines of each resulting slice. The maximum dyadic decom-
position level jmax is determined by the size (lap) of the
overlapped portion of local cosine windows, and is given
by jmax = log2(2 � lap). In the implemented transform,
we used the same value of lap for all blocks.

Transform efficiency is a measure of the energy re-
tained in a particular number of coefficients. We measure
the energy retained in the first m coefficients, and divide by
the energy retained by all coefficients, given an indication
of the energy retained in the lower frequency coefficients.

The second approach is based on the search for a vol-
ume partition that is adapted to the frequency characteris-
tics of the volume. In this method we apply all the dyadic
partition levels to the volume, generating an octree, and ap-
plying the LCT for each level. Then, the octree is traversed,
using the best basis algorithm searching for the best volume
partition.

The cost of adding adaptivity to the transform cod-
ing scheme is a header describing the decomposition of
the volume into blocks. For example, for a volume of size
2563 and lap size greater than 1, we need at most 21 bits
per block to code the level and position of each block, so
the overhead of the adaptive scheme, considering at most
262144 blocks, is of 5376 bytes, for a volume with 1 byte
per voxel will have an overhead of 0.00032 bits per voxel.

3.2 Quantization and Encoding

We use the same quantization step for a sub-volume as
in [17]. For all elements in a sub-volume we compute the
dynamic range of coefficients, given by:

Ri = kmaxV alue�minV aluek (13)

where maxV al and minV al are the maximum and mini-
mum transform coefficients values for the sub-volume. The

quantization step for this sub-volume is set to Q = Ri

2c
, with

c being a fixed constant, that is correlated to the number of
bits necessary to represent the quantized coefficients. In
this work we used c = 16 and c = 8.

To select the most significant coefficients, we follow
the approach of Chen and Pratt ([18]), who suggested block
scanning in a zig-zag order. The 3D zig-zag order through
a block is the traversal order in which (u1; v1; w1) precedes
(u2; v2; w2) if u1+v1+w1 < u2+v2+w2, and the (u; v; w)
tuples on the plane u+ v+w = K follow a 2D zig-zag or-
der. This approach is based on the assumption that a large
section of the tail end of the scan will consist of zeros be-
cause, in general, higher order coefficients have smaller am-
plitude, which can be verified analyzing the transform effi-
ciency computed for the test datasets using a normal block
traversing (traversing each slice in a row order) and using
the 3D zig-zag traversal. The results presented in section 5
show that this assumption is correct.

The linear sequence of transform coefficients result-
ing from the 3D zig-zag traversal of the blocks is fed into
an entropy encoder. To encode the coefficients we retain
a percentage of them and set the others to zero. Then, the
retained coefficients are submited arithmetic coding to gen-
erate small entropy codes for them.

The paper [19] is one of the well-known papers that
provided practical arithmetic coding algorithms. This cod-
ing method is based on the assumption that, it is more ef-
ficient to generate codewords for groups of symbols se-
quences rather than generating a separate codeword for each
symbol in a sequence. The main advantages of arithmetic
coding are its theorically optimality, great flexibility, and
adequation to the where the probabilities are highly unbal-
anced.

On other hand, arithmetic coding tends to be slow,
generally does not produce a prefix code, needs to indicate
the end of the sequence and has poor error resistance.

The arithmetic coding implementation used in this work
was made available by Alistair Moffat, and was based on
[20].

Decompression is achieved by applying the inverse stages
of the compression method, in the reverse order. The in-
verse LCT transform of the blocks must be performed fol-
lowing an fixed order, because the complete decompression
of one block depends on the decompression of its six neigh-
bors and on the addition of their contributions in the over-
lapped portion.

4 Results

4.1 Test Datasets

To evaluate the results obtained with the proposed com-
pression scheme and the influence of parameter variations
in the compression, we used the datasets described in the

Dataset Size Bits/voxel Modality

3DHead 256�256�64 8 MRI
Colt 256�256�64 8 SEISMIC

Broncho 512�512�128 8 CT
VH 512�512�128 16 CT

Table 1: Volume Datasets Description

Table 4.1.
The VH dataset is the same used in [6], [7]and [8],

that was made available by Professor Insung Ihm. The
dataset used is a clipped part of the original dataset with
512�512�128 voxels, rebuilt from the fresh CT slices of
Visible Human, with 12 bits per voxel, stored in 16 bits.

4.2 Transform Results

First we analysed the influence of the zigzag traversal
against the normal block traversal. To do this we compute
the transform efficiency (TEF) for various datasets using
the two traversal options. Transform efficiency is a measure
of the energy retained in a particular number of coefficients.
We measure the energy retained in the first m coefficients,
and divide by the energy retained by all coefficients, given
an indication of the energy retained in the lower frequency
coefficients.

The results obtained show that the zigzag traversal is
a best choice, giving up to 35% increase in the TEF. It was
also observed that the increase in the TEF due to the zigzag
traversal is greater when we use less coeficients to repre-
sent the volume blocks. These assumptions are shown in
the Figure 5, where we present the computed TEF for the
BRONCHO dataset.

#

#

#

#

#

#
#

#
#

10 20 30 40 50 60 70 80 90

Percentage of Retained Coefficients

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

ns
fo

rm
 E

ff
ic

ie
nc

y

Level 1 - ZigZag
Level 4 - ZigZag
Level 1 - Normal# #
Level 4 - Normal

BRONCHO
Lap 2

Figure 5: Comparison of the Transform Efficiency obtained
by traversing the transformed blocks in zig-zag order and
slice by slice.

From all datasets tested we conclude that the TEF is in-
versely proportional to the decomposition level, what repre-
sents that the TEF increases as we use less blocks to repre-
sent the volume. The lap size also affects the TEF, doubling
the lap size decreases the TEF of approximately 2%.

Evaluating how the transform parameters affect the com-
pression, we verified that the use of small transform blocks
reduce the reconstruction error. This implies that we get
better compression results using greater decomposition lev-
els. Other parameter that affects significantly the compres-
sion is the number of quantization cells used to quantize the
transform coefficients. In the Figure 6 we verify that the use
of 2 aditionals bits to represent the quantized coefficients
gives great reduction in the MSE. The lap size did not af-
fect significantly the reconstruction error and compression
rate, for a fixed level, the rate distortion curves generated
for various lap size were almost coincident.

0 2 4 6 8

bits per voxel

0

10

20

30

40

50

60

70

80

90

M
SE

2^8 - Level 1
2^8 - Level 2
2^8 - Level 3
2^10 - Level 3
2^12 - Level 3

Dataset: 3DHEAD
Level 3 - Lap 4

Figure 6: MSE comparison for different levels and number
of quantizations cells for the 3DHEAD dataset.

The best basis results were more highlighted in the
lower compression rate zone. The Figure 7 present the re-
sults obtained for the COLT dataset, where we can verify
that for bpv > 2:5, the best basis approach gets an in-
crease of 2 dB in the PSNR from the best fixed level result
(level 3 - lap 4). This indicates that even with the overhead
of blocks description coding, the best basis approach in-
creases the compression capabilities. Aditionally, with this
approach we did not need to find the level/lap combination
more suitable to the dataset. We verifed too, that the cost
functional used can modify the best basis result. In general,
the LpNorm was the most adequate cost functional.

Comparing the results obtained using the VH dataset
we get result similar to that obtained in [6], using decompo-
sition level 5 and lap equal to 2, being better than the result
presented in [7]. As we compare the results with the work
[8] we verified a diference from 0.25 to 0.6 bits per voxel,

0 1 2 3 4

bits per voxel

15

20

25

30

PS
N

R
 (

dB
)

Best Basis - lap 2 -LpNorm
Best Basis - lap 4 - LpNorm
Level 2 - lap 4
Level 3 - lap 4

Dataset: COLT

Figure 7: PSNR comparison of Best Basis and the Fixed
Level approaches.

for the same PSNR level. But, this compression gain ob-
tained in the Rodler work was due to the use of predictive
code between volume slices, a characteristics, as mentioned
in his work, that make his method not useful for an interac-
tive visualization environment, because of its low decoding
speed. These results are shown in the Figure 8.

#

#

#

#

#

$

$

$
$

0 0.5 1 1.5 2

bits per voxel

25

30

35

40

45

50

55

60

PS
N

R
 (

dB
)

(Rodler,1999)# #
(Kim,1999)$ $
(Ihm,1998)
Block 8x8x8

VH
Lap = 2

Figure 8: PSNR comparison of the datasets.

5 Conclusion

We have applied the local cosine transform to the com-
pression of volumetric data, developing a promising algo-
rithm for the compression of these data with the possibility
of local volume decompression, and being adequate for fur-
ther development of a visualization algorithm that allow a
wider range of users to work with very large volume data.
From the obtained results we verified that the best compres-
sion are related to the use of small volume blocks. In this

way we explore the existence of volume homogeneous re-
gions, what can be used to improve the compression. Also
it was observed that the best basis algorithm present better
results than the fixed level approach, even though its use for
a visualization systems is more complex.

The quantization stage is a central problem in the com-
pression scheme. For blocks with size greater than 32 �
32�32 is necessary the use 210 or more quantizations cells,
to avoid the introdution of artifacts. To achieve high com-
pression rates with small reconstruction errors we must use
small blocks (e.g. 43 or 83 voxels) wich make possibe the
use of less quantizations cells.

We are currently investigating quantization strategies
that produce best compression ratios while maintaining the
same reconstructed data quality, and the effects of the re-
constructions errors in the visualization of the volume data.
More investigation is needed also to evaluate the influence
of the cost functionals in the best basis computation.

References

[1] M. Levoy. Efficient ray-tracing of volume visual-
ization algorithms. ACM Transactions on Graphics,
9(3):245–261, 1990.

[2] J. Danskin and P. Hanrahan. Fast algorithms for vol-
ume rendering. In ACM Workshop on Volume Visual-
ization 1992, pages 91–98, 1992.

[3] P. Lacroute and M. Levoy. Fast volume rendering us-
ing a shear-warp factorization of the viewing transfor-
mation. Computer Graphics, 28(3):451–458, 1995.

[4] P. Ning and L. Hesselink. Fast volume rendering of
compressed data. In Visualization 1993, pages 11–18,
1993.

[5] S. Muraki. Aproximation and rendering of volume
data using wavelet data fields. In IEEE Visualiza-
tion’92 Conference Proceedings, pages 21–28, Octo-
ber 1992.

[6] I. Ihm and S. Park. Wavelet-based 3D compression
scheme for very large volume data. In Graphics Inter-
face’98, pages 107–116, 1998.

[7] T.-Y. Kim and Y. G. Shin. An efficient wavelet-based
compression method for volume rendering. In Pacific
Graphics’99, Seoul, Corea, October 1999.

[8] F. R. Rodler. Wavelet based 3d compression for very
large volume data supporting fast random acces. Tech-
nical Report BRICS RS-99-34, Department of Com-
puter Science, University of Aarhus, Aarhus C, Den-
mark, 1999. available at http://www.brics.dk.

[9] H. S. Malvar. The LOT: A link between block trans-
forms coding and multirate filter banks. In Proceed-
ings of the IEEE International Symposium on Circuits
and Systems, pages 835–838, June 1988.

[10] R. R. Coifman, Y. Meyer, and M. V. Wickerhauser.
Wavelet Analysis and Signal Processing, pages 153–
178. Jones and Bartlett, Boston, 1991. In: Wavelet
and Their Applications, edited by B. Ruskai et al.

[11] J.P. Princen and A. B. Bradley. Analysis/synthesis fil-
ter bank design based on time domain aliasing cance-
lation. IEEE Transactions on Acoustics, Speech and
Signal processing, 34(5):1153–1161, 1986.

[12] I. Daubechies and J. C. Lagarias. Two scale difference
equation: Existence and global regularity of solutions.
SIAM Journal on Mathematics Analysis, 22(5):1388–
1410, 1991.

[13] E. Laeng. Une base orthonormale de l 2(r), dont les
Éléments sont bien localisés dans l’ espace de phase
et leurs supports adapté à toute partition symétrique
de l’espace des fréquences. Comptes Rendus de
l’Académie des Science de Paris, (311):677–680,
1990.

[14] H. S. Malvar. Signal Processing with Lapped Trans-
form. Artech House, Norwood, MA., 1992.

[15] R. R. Coifman and M. V. Wickerhauser. Entropy-
based algorithms for best basis selection. IEEE
Transactions on Information Theory, 38(2):713–718,
March 1992.

[16] N. Ahmed and K. R. Rao. Discrete cosine transform.
IEEE Transaction on Computers, C-23:90–93, Jan-
uary 1974.

[17] T.-C. Chiueh, C.-K. Yang, T. He, H. Pfister, and
A. Kaufman. Integrated volume compression and vi-
sualization. Technical Report TR.94.01.04, State Uni-
versity of New York at Stony Brook, 1994.

[18] W.-H. Chen and W. K. Pratt. Scene adaptive coder.
IEEE Transactions on Communications, (32):225–
232, March 1984.

[19] J. J. Rissanem and G. G. Langdon. Arithmetic cod-
ing. ”IBM” Journal of Research and Development,
(2):149–162, March 1979.

[20] A. Moffat, R. Neal, and I.H. Witten. Arithmetic cod-
ing revisted. ACM Transactions on Information Sys-
tems, 16(3):256–294, 1998.

