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Abstract. We propose a new lossy compression scheme for volumetric data based on the local cosine transform.
This method is appropriated for further volume visualization because it provides good compression, minimizes
reconstruction errors, and allows local decompression of the volume. We analyse the compression results and
estimate scheme parameter variations, investigating the adaptivity properties and different space decomposition
arrangements.

1 Introduction pression of volumetric data start to receive more research
attention.

Volumetric datasets are being used in increasing num- ) .
9 9 Ning and Hesselink [4] proposed a method that pro-

ber, size, and complexity in many engineering and scien- vided compression and visualization of volumetric data ba-
tific applications. These applications are generally related P

to large and complex datasets that need to be submittedtsri;jt Oar;gigtg ?(lajssnetzg?s?rr]] T/Zit\(l)?luzq:nlt?zz;i/:)dnedeal: dblcoacnki)e
to volume visualization techniques. Volume visualization P g q '

techniques have two classical computing problems: long directly visualized, without the need of decompression. The

L . i visualization pr w xpensive for visu-
execution time and large memory requirements. To handle 35°¢ ated visualization process was t0o expensive for visu

the execution time requirement, several accelerated render—aIIZIng a co_mpr_essed volume. -
Muraki [5] introduced the use of wavelets to efficiently

ing techniques have been proposed, e.g. [1], [2], and [3]. ! )
The memory requirement has received less attention, evenapproxmate volumetric data. Ihm and Park [6] proposed a

though for some applications, such as seismic analysis, it isscheme for the compression of large volumeg, basgd on the
very important. For example, for a resolutionsdf2?® vox- wavelgts transform. The proposed scheme yields high com-
els, 134 Mbytes of memory are required if only one byte is pression ra_ltes, and aII(_)vv_s random access to the c_:ompressed
allocated per voxel. Even with the memory cost decreasing, \éoxells. This chfaralcterlsu_c m?_kes_ the scrr]]e_me swt(;—zd fordthe
the size of the application’s datasets never stops increasing.heve opment odvg ume visua |za[t:|o|||1 te_c nurq]_ues a kap;e_ t_o
Compression is very important to the visualization of the compressed data structure. Following this work, [7]in

large volume data on personal computers or low-end work- troduced the use of run-length encoding of the wavelet co-

stations with limited memory. What is needed is a method efficients achieving better compression rates.

that allows the user to load a compressed version of the vol- transIPor[r?"} :ngf:lﬁz tvr\:?ese?(;?nﬁgizi?)r?:lssidb-%nart]ge;r\;v:;%l?;1
ume into a small amount of memory and enables the user

to access and visualize it as if the whole uncompressed voI-COde algorithm developed to code video sequences, which

e wer present. Such acompresionscheme sho preEfe e 25 47001 ccess Lo il voxeewibi e
vide the local decompression of the data. 9 P : 9

problem of a high decoding cost.

The local cosine transform was discovered by several
1.1 PreviousWork independent works ([9], [10], [11], [12] and [13]). They
discovered the way to construct smooth orthogonal bases
subordinate to arbitrary partitions of the real line. Malvar
showed in [9] that discrete orthogonal bases with smooth
windows modulated by a Cosine IV basis would be cre-

During the first years in the development of volume
visualization techniques, the research efforts were concen-
trated on the search for real-time methods. Only with the
emergence of WWW and distributed applications, the com-



ated, and Coifman and Meyer [10] rediscovered this re- 2.1 Local CosineBasis
sult for continuous time functions. This construction is
also known by different names: Lapped Cosine Transform
(LCT), Lapped Orthogonal Transforms (LOT), Modulated

Let {I,} be a partition of the time axis in overlapping
intervals, such that:

Lapp_ed Or'thogonal Transforms, Time-Domain Aliasing Can- I, =[ap — Np,apr1 + Mpr1] 1)
cellation Filter Banks, Malvar Wavelets, and others.

In [9] the local cosine transforms were used to trans- with lim, , . a, = —oo andlim,_, ;, a, = +o0, such
form coding, given the reduction of the blocking effects and thatl, ; andI,., do not intersect each other.
transform coding gain similar to DCT. In that work, local We can define a window functiog, whose support
cosine transform was applied to the compression of unidi- is I,, and which has a raising profile on the left sobrepo-
mensional speech signals. sition subintervalQ,) and a decaying profile on the right

sobreposition subinterval, 1), given by
1.2 Contribution

0 if t ¢ I,
As we can see in the literature, several techniques han- t—ap .
. . . B== if t € Op,
dling the compression of volumetric data have been recently gp(t) = v ) (2)
emerging. In this paper we propose a new method based 1 ift e Cy,
on the local cosine transform of volumetric data, gener- B (“;*—il’t) ift € Opy1.

ating good compression rates, minimizing the reconstruc-

tion errors and being suitable for local volume decompres- wheref(t) is a monotone profile function such that

sion. We also investigate various space (time) subdivision

schemes and their reflections on compression results. This 0, ift<-1

method extend some of the existing methods applied to im- B = {1, ift>—1

ages, adding the advantage to incorporate the correlation in ) )

the slices direction. vie[-1,1] F7(t) + 57 (=) =1 (4)
In the next section, we discuss local cosine bases and Now we can define a local basis 6% (R) as a basis

their properties. In section 3 we present our volumetric derived from a Cosine-IV basis @0, 1] by multiplying a

compression scheme and d|scuss_ some results of applying, q|aion and dilation of each cosine basis function by the
such scheme to real datasets. Finally, we present the Ob'smooth windowy,. The family of local cosine functions
tained results in section 4 and provide concluding remarks b

in section 5. : L
p.k(t) = gp(t)4 | — cos <7r <k + _> p>

lp 2 lp kEN

PEZ

2 Thelocal Cosine Transform
In the study of signal representation with the least pos- ()
sible correlation, we see that the correlation present in the s an orthonormal basis di%(R). The local cosine bases

signal is mostly local. Thus, the Fourier bases are not well .5n pe characterized. like wavelet packets, by position
suitable because their basis functions are non local. Moregcgies and wavenumber supposindp = f(s).

localization can be obtained by dividing the time axis and These bases are composed of functigpg (t) with

separately computing the Fourier basis for each interval. compact suppotia, — 7, a1 + 1p+1], as shown in Fig-
This approach has the disadvantage of introducing the so e 1. P P

called border effects. The Fourier basis border effects gen- Local cosine bases are discretized by replacing the or-
erate large coefficients, which are introduced because thethogonal basis oL2[0, 1] with a discrete Cosine-IV basis

signals analyzed are not, in general, periodic. This fact is gng uniformly sampling window,. So, if we have a sam-
interpreted by the Fourier analysis as a discontinuity or an pled windowg, [n], then the family

abrupt variation in the function. In order to overcome this

problem, we can use trigonometric bases (e.g. cosine) mul- 9 N\ n—a
tiplied by a smooth window function. This way we gain {gp,k[n] = gp[n]\/licos {7? (k + 5) l—p] }
more local correlation in the signal representation, mini- P P 0<k<l,
mizing the insertion of border effects and, additionally, ob- (6)
taining the freedom to choose the time axis partition that

best represents the signal. In the following sections we is an orthonormal basis & (7).

will discuss how to generate the local cosine basis and the To decompose a functighin the basis, one must com-
method to search the bases that better represent a signal. pute the inner products of the function with each discrete

®3)
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Figure 1: (a) The overlapping intervals spanning the time
axis. (b) Window g(¢) and subintervals O, C, and Op41.
(c) The lapped windows g, 1 (£), g,(t) and g1 (£).

basis vector. A fast agorithm introduced in [14] replaces
the calculationsof (f, g,.1) by acomputation of inner prod-
uctsin the original bases, which can be computed with the
fast DCT-1V agorithm, with afolding procedure.

Suppose we wish to fold a function f across a, onto
theintervals(a, — n,,a,) and (a,, a, + 1,], using the win-
dow function g,,, the folded function fg (z)is given by:

9p() f(2) + 9p(2ap — 7) f(2a, — z)

ifx €0,

fi() =< f(z) ifnec,
9p(@) f(2) — 9p(2ap41 — 7) f(2ap+1 — )

ife €0,

)

The folding operation can be graphically represented
by flipping the modul ate function (Figure 2(b)) portionwithin
theinterval [a, — np, ap] ((ap+1,ap+1 + Np+1]) @ound the
axist = ap (t = ap+1)(Figure 2c) and summing the flipped
portion to the function portion supported in the subinterval
lap, ap +np] ([ap+1, ap+1 + np+1]) (Figure 2d), generating
the folded function as shown in Figure 2e.

We can extend the local cosine basesto represent mul-
tidimensional signals. The easiest way is through the use of
tensor products of unidimensional basis elements.

A local cosinebasisinthe 3D space can be constructed
by partitioning the space R® into volumeintervals {[a,, b,]
X [eq, dq] X [fr, he]} with arbitrary length 1, = b, — a,,
width w, = dy — ¢, and depth s, = h, — f;.

2.2 Local CosineTree

In the local cosine basis construction we can segment
the time axis into intervals [a,, a,11] Of arbitrary length.
However, Coifman and Meyer [10] showed that restricting
this partition to dyadic size we create a tree structure rep-
resenting all possible time axis partitions. The generated
structure, called Local Cosine Tree, is very similar to the

Figure 2: Graphical representation of the fold operation.(a)
Function f(¢) to be folded. (b) The modulated version of
f(t). (c) The flipped portion of the modulated f(t) that
was outside the interval. (d) The portion of f(t) insidethe
interval. (e) The flipped portion added to the inside portion
of the f(¢).

wavelet packet tree, introduced in [15], and may be used
to search the local cosine basis that is more adapted to the
signal characteristics.

If we consider atime interval [0, 7] as the signal ex-
tent, we can divide into in p = 27 intervals, I, = [ap,j,
apt1,j] wherea, ; = p2=3T for 0 < p < 27, which has
lengthl, = 277T. Theintervalsinwhich1 < p < 27 — 2
have support [a,, j — 7, ap41,; + 1), defined by window g,, ;

given by:
B (H%) ift € lap; —n,ap; +1],
(t) = 1 ift € [ap,; +n,ap1,5 — 1),
PN B (it it fapary - :
n p+1,j = T Qp1,j + 1),
0 otherwise.
)

If we compute all possible dyadic intervals, we gener-
ateatree, inwhich each level j representsa partition of the
signal extent [0, T'] into 27 subintervals. Thenalocal cosine
tree node at level j and position pin thislevel is generated
by the local cosine family

2 1\ t—ap;
BY = {gp,j(t) 5= C08 {w <k + 5) 23.5;1] }
keZ
9

In order to guarantee that the window overlaps only
with its two adjacent intervals, length I, = apt1,; — ap,;
must be greater than 2777. As in the dyadic partition the




length of an interval in the tree level j is given by [, =
27T, wehavethat thevalueof nislimitedbyn < 2=7/~1T

or that the maximum tree level is limited by log., (%

To represent a signal we simply need to choose from
the nodes of the local cosinetree a set of intervalsthat cov-
ers the complete signal extent. Thisis due to the fact that
any interval I;;, in the tree can be obtained by the sum of
its two child intervals 141 25 and I;11 2x+1. Therefore,
the representation of asignal can be obtained by cutting the
local cosine tree and selecting only intervals associated to
thetreeleaves, asillustrated in the Figure 3. The number of
different dyadic local cosine bases is equal to the number
of different subtrees of depth .J at most.

Figure 3: An admissible binary tree of local cosine bases.

Thelocal cosine binary treeis extended in two dimen-
sions into a quad-tree which divides the rectangular win-
dow into four smaller windows. In three dimensions, the
generated structure is an octree which divides the volume
window into eight sub-volume windows.

2.3 Best Basis Selection

A loca cosine basis divides the time axis into inter-
vals of varying sizes. To adapt the time segmentation to the
variations of the signal time-frequency structures we can
compare different arrangements from the local cosine tree
to choose the one that provides the best signal representa-
tion. By minimizing a concave cost function we can select
fromthe collection of local cosine basesin thetree, the sub-
set that is the best representation for asignal. The cost of
approximating f in abasis B* is defined by the Schiir con-
cave sum

where (f, g ) defines the representation of f in the basis
B*, and @ isthe single concave function.

As examples of cost functions we can mention en-
tropy and concentration in [?. Entropy, given by ®(z) =
—zlog, x, isconcavefor z > 0. The corresponding cost is
called entropy of the energy distribution, and is given by:

N 2 2
| f:gm (|(f:gm>| )
-y g, : (11)
= P I1£11?

The I? cost, ®(z) = =% for p < 2, is concave for
x > 0. Theresulting cost is:

N 2
Wﬂzzc%%g (12)

[NIE]

m=1

If the collection of bases is a tree with finite depth L,
then we can find the best basis by computing the informa-
tion cost of each node of the tree (transform block) and
comparing children to parents starting from the bottom.

The best basis algorithm in 3D computes a cost func-
tion for each volume block. In this work we used as cost
functions threshold, concentration in [? and entropy. The
threshold cost function simply countshow many coefficients
have absolute value above a threshold value e. The con-
centration in I” is obtained by summing the pth powers of
block coefficients, for 0 < p < 2. Finaly, the entropy
function used is the norm —I2 log {2. The main idea of the
fast algorithm is that the full local cosine octree is pruned
recursively at each node by comparing its entropy to the
summation of its corresponding children nodes,

if Cost(ParentNode) < [Cost(childl) + Cost(child2)
+Cost(child3) + Cost(child4) + Cost(childb)
+Cost(child6) + Cost(child7) + Cost(child8)]
then
cut off the child branches.
fi

In the beginning, a full binary-based decomposition tree
with a preset maximum decomposition level is produced.
Then, the pruning procedure starts from the leaf nodes to-
wards the root. At the end of this procedure, an optimal
pruned tree is obtained for the given signal, the so called
adaptive binary local cosine basis. The search low com-
plexity is obtained by the fact that each nodeisvisited only
twice. This occurs due to the cost functions' additive prop-
erty. For a.J-levels decomposition of asignal with N = s/
sampleswe need just O(N') comparisons.

3 Volumetric Data Compression

The transform based compression methods are com-
monly used for volumetric data with good results. In these



methods, we have three main stages. Thefirst and mostim-
portant one, is the transform of the data representation to a
domain, which is more appropriated to the processing of the
following stages. The second and third stages are, respec-
tively, quantization and codification. Essentialy the first
stage defines what will be coded in the subsequent stages.

The basic idea is to transform the data such that the
information is concentrated in just afew coefficients, then
we can discard the coefficients near zero, use a few bits
to code the less important coefficients, and concentrate the
representation in most significant coefficients. The trans-
form’s desired properties are: existence of fixed function
basis, existence of efficient computation algorithms, sepa-
rability, reduction of correlation between coefficients, and
good energy compaction properties.

DCT (Discrete Cosine Transform)[16] is one of the
most used transforms for compression. The reason is that
thistransform approximatesthe Karhunem-L oévetransform
which de-correlates all the data values, but is computation-
aly expensive because it is data dependent. To add more
desired propertiesto the discrete cosinetransform and avoid
the introduction of discontinuity artifacts, we will use the
Local Cosine Transform (LCT) describedin section 2, which
isatransformwith a C'>° orthonormal base of compact sup-
port and that generates arepresentationin scale for the data.
Additionally, this transform has the advantage of adapting

volume partition to data characteristicsin the spacex frequency

domain.

Figure 4 describes the genera flow of the proposed
method, which follows the main structure of a transform
based compression method. The initial and principal stage
is the application of LCT, followed by typical lossy coder
steps: threshol ding, removing insignificant coefficients, quan-
tization of the remaining coefficients to restrict them to a
small number of possibilities, and finally encoding thetrans-
formed data.

Figure 4. Overview of the Local Cosine Based Compres-
sion Method.

3.1 Volume Transfor mation

Theinitial stage of the compression method is the defi-
nition of avolume partition to apply the LCT. This partition
can be achieved using the Fixed L evel approach, which sub-
divides the volume into sub-volumes of equal size (n, x
ny X ny), or using the Best Basis approach, that find an
adaptive representation for the volume. The description of
the volume decomposition must be encoded in such away

that the decoder will be able to preserve the block arrange-
ment. Thisis essentia to retrieve blocksfollowing any axis
traversal order, an important characteristic to allow the de-
velopment of visualization algorithms based on the com-
pressed data structure.

Using the Fixed L evel approach, we specify the dyadic
decomposition level and the sobreposition extension (lap)
that will be used. Based on this choice, the algorithm com-
putes the associated volume partition. We have the vol-
ume decompositions restricted to the dyadic partitions of
the three axis. Thereforeavolume of size N, x N, x N,
has 2%/ blocksin the decompositionlevel j, each block with
size %2 x Ju x X For each decomposition block we
apply three one-dimensional local cosine transforms, fold-
ing the contribution of the six neighbors blocks. We can
see this process as the application of a LCT in N, x NN,
one-dimensional arrays formed by the (7, j) voxel of each
dicein the volume, using 27 intervals. Thisis followed by
the application of the same transform to the columns and
lines of each resulting slice. The maximum dyadic decom-
position level j,,.. is determined by the size (lap) of the
overlapped portion of local cosine windows, and is given
bY jimaz = 10g2(2 * lap). In the implemented transform,
we used the same value of lap for all blocks.

Transform efficiency is a measure of the energy re-
tained in a particular number of coefficients. We measure
the energy retained in thefirst m coefficients, and divide by
the energy retained by all coefficients, given an indication
of the energy retained in the lower frequency coefficients.

The second approach is based on the search for a vol-
ume partition that is adapted to the frequency characteris-
tics of the volume. In this method we apply all the dyadic
partition levelsto the volume, generating an octree, and ap-
plyingthe LCT for each level. Then, the octreeistraversed,
using the best basis algorithm searching for the best volume
partition.

The cost of adding adaptivity to the transform cod-
ing scheme is a header describing the decomposition of
the volume into blocks. For example, for a volume of size
2563 and lap size greater than 1, we need at most 21 bits
per block to code the level and position of each block, so
the overhead of the adaptive scheme, considering at most
262144 blocks, is of 5376 bytes, for a volume with 1 byte
per voxel will have an overhead of 0.00032 bits per voxel.

3.2 Quantization and Encoding

We use the same quanti zation step for asub-volume as
in [17]. For al elements in a sub-volume we compute the
dynamic range of coefficients, given by:

R; = ||maxValue — minV alue|| (13)

where mazV al and minVal are the maximum and mini-
mum transform coefficients values for the sub-volume. The



guantization step for this sub-volumeissetto Q = }21 with
¢ being afixed constant, that is correlated to the number of
bits necessary to represent the quantized coefficients. In
thiswork weused ¢ = 16 and ¢ = 8.

To select the most significant coefficients, we follow
the approach of Chen and Pratt ([18]), who suggested block
scanning in a zig-zag order. The 3D zig-zag order through
ablock isthetraversal order in which (u1, vy, w;) precedes
(uz, va, we) if ug +v1+w; < us+ve+wo, andthe (u, v, w)
tuplesontheplaneu + v + w = K follow a2D zig-zag or-
der. This approach is based on the assumption that a large
section of the tail end of the scan will consist of zeros be-
cause, in general, higher order coefficientshave smaller am-
plitude, which can be verified analyzing the transform effi-
ciency computed for the test datasets using a normal block
traversing (traversing each slice in arow order) and using
the 3D zig-zag traversal. The results presented in section 5
show that this assumption is correct.

The linear sequence of transform coefficients result-
ing from the 3D zig-zag traversal of the blocks is fed into
an entropy encoder. To encode the coefficients we retain
a percentage of them and set the others to zero. Then, the
retained coefficients are submited arithmetic coding to gen-
erate small entropy codes for them.

The paper [19] is one of the well-known papers that
provided practical arithmetic coding algorithms. This cod-
ing method is based on the assumption that, it is more ef-
ficient to generate codewords for groups of symbols se-
quencesrather than generating a separate codeword for each
symbol in a sequence. The main advantages of arithmetic
coding are its theorically optimality, great flexibility, and
adequation to the where the probabilities are highly unbal-
anced.

On other hand, arithmetic coding tends to be slow,
generally does not produce a prefix code, needs to indicate
the end of the sequence and has poor error resistance.

Thearithmetic coding implementation used in thiswork
was made available by Alistair Moffat, and was based on
[20].

Decompressionis achieved by applying theinverse stages
of the compression method, in the reverse order. The in-
verse LCT transform of the blocks must be performed fol-
lowing an fixed order, because the complete decompression
of oneblock depends on the decompression of its six neigh-
bors and on the addition of their contributionsin the over-
lapped portion.

4 Results
4.1 Test Datasets

To evaluatethe results obtained with the proposed com-
pression scheme and the influence of parameter variations
in the compression, we used the datasets described in the

| Dataset | Size | Bits'voxel | Modality |
3DHead | 256x256x 64 8 MRI
Colt 256 256 x 64 8 SEISMIC
Broncho | 512x512x128 8 CT
VH 512x512x128 16 CT

Table 1: Volume Datasets Description

Table4.1.

The VH dataset is the same used in [6], [7]and [8],
that was made available by Professor Insung Ihm. The
dataset used is a clipped part of the original dataset with
512x512x 128 voxels, rebuilt from the fresh CT dlices of
Visible Human, with 12 bits per voxel, stored in 16 bits.

4.2 Transform Results

First we analysed the influence of the zigzag traversal
against the normal block traversal. To do this we compute
the transform efficiency (TEF) for various datasets using
thetwo traversal options. Transform efficiency isameasure
of the energy retained in aparticular number of coefficients.
We measure the energy retained in the first m coefficients,
and divide by the energy retained by all coefficients, given
an indication of the energy retained in the lower frequency
coefficients.

The results obtained show that the zigzag traversal is
abest choice, giving up to 35% increasein the TEF. It was
also observed that the increase in the TEF due to the zigzag
traversal is greater when we use less coeficients to repre-
sent the volume blocks. These assumptions are shown in
the Figure 5, where we present the computed TEF for the
BRONCHO dataset.

BRONCHO

Lap2

o
©
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— :
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o
)
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Figure5: Comparison of the Transform Efficiency obtained
by traversing the transformed blocks in zig-zag order and
dlice by dlice.



Fromall datasetstested we concludethat the TEFisin-
versely proportional to the decomposition level, what repre-
sents that the TEF increases as we use less blocks to repre-
sent thevolume. Thelap size aso affectsthe TEF, doubling
the lap size decreases the TEF of approximately 2%.

Evaluating how the transform parametersaffect the com-
pression, we verified that the use of small transform blocks
reduce the reconstruction error. This implies that we get
better compression results using greater decomposition lev-
els. Other parameter that affects significantly the compres-
sion isthe number of quantization cells used to quantize the
transform coefficients. In the Figure 6 we verify that the use
of 2 aditionals bits to represent the quantized coefficients
gives great reduction in the MSE. The lap size did not af-
fect significantly the reconstruction error and compression
rate, for a fixed level, the rate distortion curves generated
for various lap size were almost coincident.

Dataset: 3SDHEAD

Level 3-Lap4
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7014 & 2°8 -Level 2
O-©O2'8 -Level 3
A—A2M0- Level 3
60 *—k 2M12- Level 3
\ e =]
50 Al
8 4\
=
wo|- A
30
20 O
SN
10 SR iy S
&Mf\@ O
0 *n——
0 2 4 6 8

bits per voxel

Figure 6: M SE comparison for different levels and number
of quantizations cells for the 3SDHEAD dataset.

The best basis results were more highlighted in the
lower compression rate zone. The Figure 7 present the re-
sults obtained for the COLT dataset, where we can verify
that for bpv > 2.5, the best basis approach gets an in-
crease of 2 dB in the PSNR from the best fixed level result
(level 3 - lap 4). Thisindicates that even with the overhead
of blocks description coding, the best basis approach in-
creases the compression capabilities. Aditionally, with this
approach we did not need to find the level/lap combination
more suitable to the dataset. We verifed too, that the cost
functional used can modify the best basis result. In general,
the L?Norm was the most adequate cost functional.

Comparing the results obtained using the VH dataset
we get result similar to that obtained in [6], using decompo-
sition level 5 and lap equal to 2, being better than the result
presented in [7]. As we compare the results with the work
[8] we verified a diference from 0.25 to 0.6 bits per voxel,

Dataset: COLT

G—© Best Basis- lap 2 -LpNorm 9/ /O
30| A—A Best Basis- lap 4 - LpNorm
50 Level 2-lap 4 )
& Level 3-lap4 W
A AN
5 25
=2
i
2 3 4

bits per voxel

Figure 7: PSNR comparison of Best Basis and the Fixed
Level approaches.

for the same PSNR level. But, this compression gain ob-
tained in the Rodler work was due to the use of predictive
code between volumeslices, acharacteristics, as mentioned
in hiswork, that make his method not useful for an interac-
tive visualization environment, because of itslow decoding
speed. These results are shown in the Figure 8.
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Figure 8: PSNR comparison of the datasets.

5 Conclusion

We have applied the local cosine transformto the com-
pression of volumetric data, developing a promising algo-
rithm for the compression of these data with the possibility
of local volume decompression, and being adequate for fur-
ther development of a visualization algorithm that allow a
wider range of usersto work with very large volume data.
From the obtained results we verified that the best compres-
sion are related to the use of small volume blocks. In this



way we explore the existence of volume homogeneous re-
gions, what can be used to improve the compression. Also
it was observed that the best basis algorithm present better
results than the fixed level approach, even thoughits use for
avisualization systemsis more complex.

The quantization stageisacentral problemin the com-

pression scheme. For blocks with size greater than 32 x
32 x 32 isnecessary the use 2'° or more quantizationscells,
to avoid the introdution of artifacts. To achieve high com-
pression rates with small reconstruction errors we must use
small blocks (e.g. 4° or 8 voxels) wich make possibe the
use of less quantizations cells.

We are currently investigating quantization strategies

that produce best compression ratios while maintaining the
same reconstructed data quality, and the effects of the re-
constructions errorsin the visualization of the volume data.
More investigation is needed also to evaluate the influence
of the cost functionalsin the best basis computation.
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