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ABSTRACT. A fundamental process in signal representation is the sampling
choice, as it may determine the reconstruction’s properties and the represen-
tation’s precision. Classic image sampling is done regularly on the domain,
matching the capture devices’ architecture, and theory is already well estab-
lished in the machine learning area. However, regularly sample on the domain
is only sometimes possible or convenient. This work aims to shed some light on
stochastic sampling, analyze the different choices to sample, construct analog
structures from the regular case, and use our implementations on the specific
application of implicit curves.

1. INTRODUCTION

An important task in computer vision is media representation, as a good proxy
may showcase the signal’s features (such as critical points, frequency content, de-
tails, for example) or be used as input for further processing. In order to solve the
task, a hypothesis is made about the space the signal belongs to and the media
is then sampled in a base of said space, creating a discrete representation of the
signal. Then, a dual basis is used to transform those samples into an approximation
of the original media.

A common choice for the representation basis is known as unit impulse basis,
which takes evenly spaced points in the media object’s domain and obtains the
media’s values on those coordinates. This kind of sampling is known as regular
sampling, and it has been widely studied for many sensory systems are constructed
based on the same principle. For example, in Figure 1, we can see an example with
regular sampling.

This sampling, however, has certain disadvantages:

e As enunciated on Shannon Theorem [7], the signal reconstructed from a
regular sampling with N samples will have frequency band of % (this is also
called the Nyquist Limit). This, however, indicates that higher frequencies
can only be obtained if denser sampling is done. This results from the
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uniformity of samples over the domain, so stochastic sampling may be free
of such a problem.

e When the space the signal belongs to has a high dimension, regular sampling
becomes prohibitively expensive to compute. Then, aided by techniques
such as ray tracing or path tracing, it is possible to use fewer stochastic
samples to reconstruct the media object.

In the context of implicit neural representations, when training coordinate-based
models such as the ones described by [10], [11] or [9], the coordinates used during
training strongly impact the subsequent reconstruction of the signal. One such
example is present in [6], where coordinates are carefully selected to allow the
model to represent surfaces in real-time, a feat that may be impossible by training
the model with coordinates uniformly spaced in the domain.

Based on the previous considerations, the objective of this report shall be the
analysis of the representations given by models trained with different kinds of sto-
chastic samples. Section 2 will give an overview of different kinds of stochastic
samplings and comparisons with the regular sampling. Section 2 will explore the
usual structures defined for the model in [11] and the creation of similar structures
for the stochastic case. Then, an alternative to such structure is raised in section
4, considering two filters in training: Gaussian and bilateral.

Section 5 will consider a more careful choice of the training coordinates by using
SIFT and Harris feature extractors and analyze an adaptive scheme to sample coor-
dinates using the Warnock algorithm. Finally, Section 6 will present an application
of stochastic sampling to reconstruct implicit curves similarly to [6] and [10].
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FIGURE 1. Regular Sampling Results
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2. STOCHASTIC SAMPLING

As shown in many previous works [3], stochastic sampling can allow for a sam-
pling that trades aliasing error for random noise. This section will survey some
common types of stochastic sampling techniques: Uniform, jittered, and Poisson
disc sampling.
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2.1. Uniform

Uniform sampling means to sample points on the space from the uniform dis-
tribution. One of the advantages is that it is fast and simple to implement. As a
disadvantage, it also produces the worst results we have seen. However, there have
been recent works using the properties of uniform sampling to efficiently train the
network in more points in the domain (see [6]), so further study may be needed
to explore this sampling potential. In our case we only sample only once in the
training procedure. If we perform many samples for each epoch, it would be better.

FIGﬁRE 2. .Uniforrh Sampling Resﬁits

2.2. Jittered

Jittered sampling is used to get the points from the regular sampling distribution
and, with these points, apply some random noise to these points. This can induce
the points to have a bit of “noise” and some stochasticity to the proceedings.

2.3. Poisson Disk Sampling

Poisson disk sampling is a type of random sampling in which the algorithm
places the points randomly but ensures that every point is apart from the other by
a radius of r. In our case, we use a modified version of [1].

Also, in the beginning, we had some problems ensuring that the points for the
Poisson disk were evenly distributed around the image sample. As the image shows,
we also had to perform some tuning from the hyper-parameters,

An essential characteristic of Poisson disk sampling entails its categorization as
a form of blue noise. In other words, it constitutes a type of noise with absence
of prominent concentrated spikes of energy (see [1]) that is often related with the
retinal system. Nonetheless, a significant drawback associated with this sampling
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FIGURE 4. Poisson Sampling Example

methodology relates to its relatively slow execution time. Specifically, [1] reports a
time complexity of approximately O(N) for the execution of Poisson disk sampling.
Furthermore, the sampling creation process is highly non-parallelizable, making it
necessary to pre-compute and store the training points.

3. STOCHASTIC PYRAMID

In image processing and computer vision, the denominated Gaussian and Lapla-
cian pyramids are commonly used structures to analyze an image’s features. In
multiresolution theory, they appear as a natural definition as a decomposition of
an image on scale and detail. They aid in applications such as image blending and
morphing, texture analysis and synthesis, edge detection, etc.
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Particularly, the Gaussian pyramid of an image is required to reconstruct it
correctly based on regular samples; otherwise, an aliasing artifact could appear
in regions with high frequencies. However, this only sometimes happens when
reconstructing based on stochastic samples.

We are thus interested in creating similar structures for non-regular samples
and analyzing the reconstruction properties of an image trained on such structures.
Also, unlike its regular counterpart, we show that such a structure is not restricted
to integer scaling for the pyramid, giving more freedom in the scale-detail domain.

3.1. Regular MRNet Structures

As introduced in [11], the MR~Net has devised a model architecture that gener-
ates a multiresolution representation for images. For that sake, the input image is
processed into one of the following four structures:

e Gaussian pyramid: Creates a pyramid of images by filtering and down-
sampling (with a scale of 2) the previous level’s image.

e Gaussian stack: Having constructed the Gaussian pyramid, resize the im-
ages to the original image’s size.

e Laplacian pyramid: Given the image’s Gaussian pyramid, the pyramid lev-
els are subtracted to get the details in different scales. It can also be
considered the discrete Laplacian of the image at different scales.

e Laplacian stack: The images that compose the Laplacian pyramid are re-
shaped to the original image’s size to get the stack.

It’s important to observe that the original image undergoes filtering to mitigate
artifacts such as aliasing in the creation of pyramids. While this process is essen-
tial when the image coordinates are regular, it may be less crucial for stochastic
coordinates.

3.2. Stochastic Pyramid

A stochastic pyramid was implemented using Poisson disc sampling in the fol-
lowing manner: given an image sampled on a Poisson disc grid G with radius r1, to
up(down)-sampling it, a new, smaller(bigger) ratio 7o is defined, and points adher-
ing to the Poisson disc sampling criteria (as outlined in [1]) are added(removed).

Observe that the previous algorithm presents several advantages:

e Compared to the classic Gaussian pyramid, our pyramid is agnostic to the
scale s, which is given by

T T2
s=max | —, —
T2 T1
with 1,72 € R.

e Due to the stochastic sampling nature, the points chosen during the pyra-
mid creation process could be designated as key samples of the image, such
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as critical points or those with the highest variance in the region. Leverag-
ing higher-order information from these points can enhance the reconstruc-
tion, as demonstrated in [6].

The potential of this pyramid may lie in its ability to generate a multiresolution
representation of the image within selected scale spaces, focusing on the image’s fea-
ture points and eliminating the necessity for filtering at each level. Future endeavors
could delve into exploring this aspect. Nevertheless, there are certain drawbacks
inherently associated with this technique.

The pyramid constructs a new image at each level, diminishing the resolution
proportionally to the scale. This leads to increased disk memory needed for training
data, potentially rendering it impractical for higher image resolutions. Due to this,
the upcoming section will suggest an alternative method to alleviate noise during
training, thus acting as a natural filter.

Upsampling: First level Downsampling: First level

FIGURE 5. Pyramid Poisson Results 1rst level

Upsampling: Second level Downsampling: Second level
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FIGURE 6. Pyramid Poisson Results 2nd level
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4. FILTERS

Filtering plays a pivotal role in computer vision and image processing as it is
a fundamental technique for enhancing, modifying, or extracting specific features
from images. It is crucial for noise reduction, as it helps mitigate the impact of
unwanted artifacts or disturbances in images, contributing to the improvement of
image quality and the efficacy of subsequent processing steps.

More specifically, when regular samples represent the image, filtering avoids
structural noise in the down-sampling process. This is very important when rep-
resenting multiresolution images, as it is not possible to eliminate the structural
noise product of defective samples using post-filtering.

However, as stated before, the cost of creating a Gaussian/Laplacian pyramid is
undesirable. In that case, we present an alternative that considers a type of filtering
during the training of the neural network.

4.1. Structure of the Filters

The objective of filters is to reduce the variation around a point by approximating
a point value to a weighted mean over neighbors’ evaluations of said point. The
objective of such a process is to reduce high variation noise and avoid aliasing
artifacts.

The intuition behind this process can be used to introduce a softening of the
function during the training: For all points in a grid G, it can be defined as a
context grid G such that fy will fit a mean of neighbors in G.

More formally, for each z; € G, we will select the N; nearest points {ay) € Q}
and perform the optimization algorithm minimizing the function

2

i=1

N N;
(4.1) fo(xi) —ijf(aij)

where the choice of w; defines the filter used, for example, by choosing w; = 1/N
and N; = N for all i, j, we are applying the box filter.

As we can see, we are training the model to fit the points at a softened version
of the ground truth image. However, the previous equation may be expensive to
compute as it is necessary to interpolate the image on the stochastic points at each
training step.

Then, the following modified version was implemented instead:
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2
N

N;
(4.2) S| fo(x) —ijf9($i+vj)

i=1

for some random (but fixed) vectors {v; € U([—Tneigh, —Tneign]?)}. In this case,
G = {z; +v; : @ € G,j € {1,..,N}}. As the random points are already fixed,
we can compute those points’ evaluations before training, which speeds up the
implementations.

Notice that equation 4.2 bears a strong resemblance with the model’s Laplacian,
in the following way: Given that fy is a continuous representation for the image,

subtracting a mean of fy(x;) = Z-(jfmered) to fo(x;) = I;; would be equivalent to

extract the details of the image, or in a more general view, to compute

I — I(filtered)

which is a common way to compute the Laplacian for the image I.

ground truth no filter gaussian filter bilateral filter

FIGURE 7. First row: image reconstruction with stochastic sam-
ples. The second row shows the magnitude of the Fourier series
coefficient.

4.2. Gaussian

Given the equation 4.2, applying a Gaussian filter means the weights w; are
chosen based on the distance to the point. More specifically,

w; = (o, z; — (x; —v;)) with O(o,z) = exp (22 /20)

1
V2o
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then w; = ®(0,v;) where o is an hyperparameter. Notice that the choice of o is
tied to the choice for 7yeign as if & >> rpeign, then the filter would be equivalent
to the box filter, and if 0 << Tpeign then it would not filter the image.

The Gaussian filter is particularly popular as it has the best space-frequency
localization, and it is possible to implement it efficiently using various techniques
such as fast Fourier transform. However, the Gaussian filter is data-independent,
making it blur noise and fine detail equally. The following section will show a special
choice for the weights that seek to maintain fine-grained details such as corners and
edges while blurring noise.

4.3. Bilateral

Unlike the Gaussian filter, the bilateral filter is defined as a weighted average
of samples that takes into account the variation of intensities to preserve edges
(data dependent). The rationale of bilateral filtering is that two points are close to
each other if they occupy nearby spatial locations and have some similarity in the
photometric range.

More precisely, if p € G, N C G is the set of N neighbour points to p in G and
I is the value of the image on u, then

1
= 3 @(ou b~ all®(or, Iy~ T
P
qeEN

where W}, is a normalization factor

Wp=>_ ®(0s[lp—al)@(or, Ip — Iq)
qeN

The bilateral filter is controlled by two parameters: o5 and o,.. The range parameter
o, controls the threshold for the difference between two adjacent intensities to be
considered an edge. Thus, the higher the value of o, the closer to Gaussian blur.
On the other hand, the spatial parameter o, controls the size of the neighborhood
the weighted averages will be taken from.

The implementation used in this report was a direct approach for the bilateral
filter, thus having a high computational cost. Future work may consider using a
faster implementation, such as the bilateral grid or similar methods (see [8]).

5. ADAPTIVE SAMPLING

In this section, we review the types of algorithms that we used to perform adap-
tive sampling. That is, a type of sampling that is based on the data being processed
and can "adapt”” to the behavior of the data.
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5.1. Feature Sampling

We performed adaptive sampling based on SIFT [5] and the Harris corner de-
tector [4]. For our approach, we first took the SIFT features and Harris corner
detection samples and took points inside a circle with a specified radius. Then, we
combined these points with those already sampled from the image.

130

250 )
o 30 100 130 200 30

F1GURE 8. SIFT Feature Sampling, example
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FiGURE 9. Harris Feature Sampling, example
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5.2. Adaptive Multiresolution Warnock Sampling

For the adaptive multiresolution Warnock sampling, we were inspired by the
classical Warnock’s algorithm [12] to solve the visible surface problem. To do this,
we used quad-trees and recursively subdivide the image till it stops at a variance
threshold for the gradient. After doing this, our algorithm stops. We used the
previously mentioned stochastic pyramid to perform this analysis. After doing
this, we ”squash the samples and use them during training.

FIGURE 10. MR-~-Warnock Sampling. On the left, we can see the
quad-tree that we used to generate the samples, and on the right,
we can see the samples.

6. ImpLICIT CURVES

In this section, we briefly describe our experiments with implicit curves, both in
3D and in 2D. for the 3D curves, we adapted [6] to work with the [9] framework.

6.1. MR-i3D

i3D [6] is a state-of-the-art technique for reconstructing a deep neural implicit
level set given a mesh. By adapting it for the MR-Net framework, we were able to
make some tests for this type of framework. We used all the losses of the [6] but
adapted their code for our setting.

6.2. 2D Curves

In this section, we describe some of the tests we have done with 2D implicit
curves and how we adapted i3d for 2D. We first draw the points; however, since
only those points are not enough, we instead use a Chaikin subdivision [2] to get
even more points. After this, we gain access to the normals and the points of
these points for each vertex. Next, since we have the polygon, we can compute the
exact SDF for the polygon. So, we can proceed with the standard i3d pipeline. In
Figure 13, we see some of the results of using this technique.
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F1GURE 11. MR-i3d Training

-100

oo . . . —100 . e —
SLOD -0.75 -0.50 -0.25 00D 025 050 075 100

00 02 04 o o8 10 -100 -0.35 -0.50 -0.25 0.00 025 050 075 100

Input Ground-Truth Prediction

FIGURE 13. In here we can see the input, the result of the subdi-
vision SDF with the normals, and, finally, the computed SDF and
its normals

7. CONCLUSION

Although there are still many future avenues for research and open problems
that this report does not address, we hope that our report assists as a compilation
of different techniques. Finally, the port of i2d can be an important avenue for
research. For example, future work can be done on exploring the geometry of the
2D curves.
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