
Laboratório VISGRAF
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Abstract

Recently, (coordinate-based) sinusoidal neural networks have ex-
hibited promising results in representing most signals in computer
graphics, such as images and implicit surfaces. There is, however,
a general lack of understanding behind the capacity and architec-
ture a neural network may have to represent a determined signal. In
this work, we study sinusoidal neural networks from a Fourier series
perspective and link the initialization and training schemes with the
model’s dominant frequencies to obtain the appropriate capacity for
the model to learn the signal.

Based on the observation above, we propose a training procedure
that restricts the network’s band limit during training. Additionally,
we present a pruning scheme that explores the model’s properties to
compact its parameters during (or after) training. Finally, we propose
a scheme that adapts the model size during training, allowing the
network to accurately and compactly represent a signal.

1 Introduction

1.1 Motivation

Recently, there has been a growing surge in the use of coordinate-based neural
networks –also known as implicit neural representations or INR– within the
computer graphics community. In contrast to their classical discrete coun-
terpart, where signals are sampled and vectorized before processing, INRs
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encode them continuously on the parameters. They do so by mapping the
coordinates to the target signal values.

Tancik et al. [33], Yüce et al. [39] proved that by first mapping coordi-
nates to a harmonic dictionary, coordinate-based neural networks bypass the
spectral bias [22] that previously hindered the advance of representational
multilayer perceptron neural networks (MLPs).

Specifically for the case of periodical neural networks, it was recognized
to be a hard task to train such models [19] given their global support and
infinite critical points. Sitzmann et al. [27] overcome this issue by defining
a special initialization scheme that guarantees stability and convergence for
sinusoidal neural networks, MLPs with sine activation function.

This result motivated several works [20, 21, 24] that empirically proved
that these networks have a high capacity to represent fine details. This suc-
cess is partially due to two principal properties of sinusoidal MLPs: smooth-
ness and compactness.

However, determining/compacting the parameters of these networks re-
mains an empirical task. This work considers an alternative approach to
studying this problem through a novel dictionary learning approach that
contemplates a pruning scheme with finetuning that guarantees training sta-
bility by targeting the most redundant weights and a grow model stage that
adds Fourier atoms to the dictionary agreeing with the target signal’s Fourier
spectra.

Moreover, as seen in Tošić and Frossard [34], Yüce et al. [39], a recurrent
problem during sinusoidal neural networks training has been the control of
the reconstruction’s frequency bandwidth. By imposing a condition over the
hidden layer weights according to the upper bound shown in Novello [15],
this work presents a method to control the growth of the model’s bandwidth
during training.

1.2 Contributions

This work relies on the theoretical background recently proposed by Novello
[15], setting a mathematical foundation to address the problems of optimal
model capacity, training stability, and fast convergence similarly to the ω0

parameter. Finally, it proposes a compression scheme based on the insights
obtained.
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More specifically, our contributions are:

• Interpret a single hidden layer and the model’s it’s capacity (width and
depth): The results shown in [15] allow us to understand the role of
several model components on the reconstruction’s Fourier series (see
Chapter 4). Chapter 5 shows that it is possible to initialize the si-
nusoidal network to fit the signal with more precision and faster con-
vergence while considering the significance of each component on the
reconstruction.

• Frequency control: Based on the upper bounds defined in [15], we show
in Chapter 6 that it is possible to grow the frequency band during train-
ing, allowing the model to progressively generate higher frequencies in
line with the distribution of energy commonly seen in the spectrum of
images.

• Compression: Using the understanding obtained on the model coupled
with a custom initialization scheme, Chapter 7 explores an importance
criterion for each weight in the model. With such criteria, we suggest
a structured pruning scheme (see Definition 3.2.2) that will consider
the relationship between weights in the same row(column) and their
influence on the reconstruction.

2 Related Works

Implicit Neural Representations: Implicit Neural Representations (INRs)
[36] are emerging topics of interest in the artificial intelligence community.
In contrast to traditional representational methods, INRs act as a continu-
ous mapping between coordinates and the signal values, codifying the target
function into their parameters as fields, which makes them efficient and com-
pact.

Current INR architectures use positional encoders, such as Fourier feature
mappings [14, 33] or sinusoidal activation functions [27], to allow the model
to bypass the spectral bias [22] common in MLPs, representing fine details.
A more detailed study of the architecture’s representational capacity was
studied by Yüce et al. [39], Zell et al. [40], presenting the most common
problems of INRs (appearance of artifacts or imperfect recovery), showing
that initialization of the model increases encoding efficiency and modeling
the fitting problem as a dictionary learning problem [34].
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Periodic INR: Considering periodic activation functions in neural net-
works is an old approach [19, 30]. However, it wasn’t until the introduc-
tion of the initialization schema proposed by Sitzmann et al. [27] that net-
works with periodic activation functions became widespread. They have
shown promise in the representing multimedia such as audios [6, 27], images
[2, 3, 5, 29], representation of signed distance functions [12, 16, 24, 27], dis-
placement fields [38], surface animation [17], among others. In particular,
being smooth representations allows us to use sinusoidal networks’ analyt-
ical derivatives as constraints during the training (see [16]) or to represent
solutions of differential equations [27].

Moreover, the novel approach presented in [15] defines an equivalent form
to the model as a sum of Fourier atoms that showcase the role of the model
components in the signal’s Fourier series approximation. [40] presented a
similar approach where it was shown the relationship between Fourier fea-
ture mapping, SIREN, and the Fourier series of the approximation when
initializing the first layer with integer frequencies (as is the case in most of
this work).

Control of frequencies: One of the most well-known downsides of si-
nusoidal networks is the noise generation during training or in networks with
many hidden layers. Sitzmann et al. [27] bypassed the problem with an
initialization scheme that kept the distribution of the weights from chang-
ing abruptly during training. However, the parameter ω0, if not tuned well,
introduced noise (high frequencies not present in the original function).

Along the same idea as SIREN surged WIRE [23], an INR that uses com-
plex Gabor wavelet as an activation function given that it is optimally con-
centrated in space–frequency and has shown good results in classical image
representation theory. Despite promising, this approach has yet to provide a
definite advantage over sinusoidal networks.

BACON [12] presented a more straightforward strategy: A multiplicative
network architecture where the Fourier spectrum characterizes the behavior
of the trained model, and each layer’s bandwidth can be adjusted analytically.
Recently, Dou et al. [4] added a level of detail scheme to reduce noise by
centering high frequencies in sections of the domain where the signal had the
most details.

Compression on neural networks: Previous to the boom of coordinate-
based neural networks, different works already focused on model compres-
sion. Several methods [5, 28] consist of a mixture of pruning, quantization,
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and entropy coding scheme to reduce the model, while others use knowledge
distillation [32], or meta-learning to create a residual representation of the
model [25, 31]. Menghani [13] gives a more extensive survey of deep learning
compression schemes.

3 Preliminaries

This work addresses the problem of obtaining an efficient INR given any
sampled signal. In particular, we focus primarily on image media, narrowing
the study to signals f : R2 → R3. However, our methods extrapolate to
other domains and codomains.

We will describe the INR used throughout this work and several imple-
mentation choices. Then, we define what we shall consider an efficient INR
and depict the methods employed to fit our model with that objective in
mind.

3.1 Representation

We focus on the subclass of INRs that consists of multilayer perceptrons
(MLPs) that use the sine as activation function – sinusoidal INRs [27]. Such
networks are compact compositions of multiple sinusoidal layers with high
representational capacity.

Definition 3.1 (Sinusoidal Layer). Given W ∈ Rn×m and b ∈ Rn, a sinu-
soidal layer is a function S : Rm → Rn defined as S(x) = sin(Wx+ b). The
matrix W will be called weights, and b is the bias.

Then, given a set of parameters θ = {ω := W0, φ := b0,W1,b1, ...,Wl,bl}
such that Wi ∈ Rni×ni−1 and bi ∈ Rni (n0 = 2, nl = 3, ni ∈ N+ for 0 < i < l),
we can define a sinusoidal neural network as:

fθ(x) = WlSl−1 ◦ · · · ◦ S1 ◦ Sω,φ(x) + bl (1)

where l is the depth of the model and ni is denoted the width of the (sinu-
soidal) layer i.

The first layer, which will be of particular importance, will be specially
denoted as H = Sω,φ. Layer l is usually noted as last/final layer, and all
others receive the name of hidden layers.
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Notice that by introducing biases in each sinusoidal layer, it becomes
equivalent to use sine or cosine as the activation function, given that

sin(Wx + b) = cos

(
Wx + b − π

2
1
)
,

then a network with a sine activation function is equivalent module shifting
of all biases to another model with a cosine activation function.

Understanding how sinusoidal layers perform is a recent research topic [15,
39, 40]. First, we note that H maps the coordinates x to a list of harmonics
with frequencies defined by the coordinates of ω. Composing such a list with
a hidden sinusoidal layer results in iterative harmonic expansions, also in
terms of ω (Theorem 1). Finally, the linear transformation Wl ·x+bl maps
back to the original spatial space.

The above observation regarding frequency expansion implies that the
coefficients of the first layer, namely ω and φ, are crucial. We refer to them
as the input frequencies and shifts, respectively. Additionally, note that the
initialization values for these coefficients define the type of positional encod-
ing [27, 33] used by the model. Moreover, the initialization of θ parameters
significantly influences training speed [8] and reconstruction quality.

This work proposes the following initialization settings:

• Based on Nyquist limit [18, 26], we select the initial harmonic atoms
Hi (i ∈ {1, ..., n0}) to have frequencies on the bandwidth [−w0, w0]

2

with w0 ∈ N+. This new hyperparameter will have a similar role in the
training as the ω0 defined by Sitzmann et al. [27].

• The input frequencies are selected such that

ω ∈
(
2π

p
Z2 − {(0, 0)}

)n0

.

This guarantees (see Chapter 4) that the reconstruction will belong to
the space of periodic functions with period p. This hypothesis, used
by several contemporary works [11, 35, 37], is reasonable for image
representation as the values of the function outside the image domain
are irrelevant in the reconstruction task. Moreover, such models may
aid in tasks like texture tiling or extrapolating the image’s features.

• The input frequencies ω aren’t updated during the training process,
which guarantees the periodicity of the trained neural network (see
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Theorem 1). Consequently, the reconstruction space is determined im-
plicitly through the first layer initialization.

• Most results mentioned in this work can be inductively applied to a
model with arbitrary depth l > 1. Therefore, all discussions will con-
sider sinusoidal neural networks with a single hidden layer unless oth-
erwise stated.

The notation used henceforth will be fθ(x) = CSA,b ◦ H(x) + d

Chapter 4 will give a more comprehensive overview of initialization and
the model’s frequencies.

3.2 Efficient Representations

It shall be considered as efficient a representation that is fast to compute, of
high fidelity (usually measured in PSNR), and consumes less memory foot-
print. In that sense, sinusoidal networks have shown potential as efficient
representations for several media. Moreover, with a careful selection of hy-
perparameters, the model overfit signals faster than most INRs.

Following the previous definition of efficient sinusoidal networks, the fol-
lowing sections will cover the descriptions of the training scheme and loss
functionals deployed. Then, the compression method used in the experi-
ments in Chapters 7 & 8 will be introduced.

3.2.1 Training & losses

When fitting an image, an iterative optimization process commonly known
as training is applied over the sinusoidal neural network’s parameters θ. In
the n-th training step (or epoch), the function fθndescribed in Equation 1
is compared against the true image on the known samples by using a loss
functional L. As the objective is to reduce the difference (loss) between f
and fθn , the parameters in θn are adjusted by ∆θn using a gradient descent
scheme over L (that is dependant on θn), resulting in the adjusted model
fθn+1 = fθn+∆θn .

In this work, we use the classic Mean Square Error (MSE) loss function
LMSE to fit the model to the image. In addition, we employ the loss functions
defined below during the compression process.
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Definition 3.2 (Weight decay). Let fθ be a sinusoidal neural network with
depth 2. The weight decay loss functional is,

Lwd(f, fθ) = ∥A∥1 .

The training process with loss functional L = (1 − α)LMSE + αLwd with
α ∈ [0, 1] is denoted weight decay.

Definition 3.3 (Targeted weight decay). Let fθ be a sinusoidal neural net-
work with depth 2. Given I ⊆ {1, ..., n0}, the targeted weight decay loss
functional (over columns) is defined as

Lc
I(f, fθ) =

∑
i∈I

∥∥∥A(i)
∥∥∥
1

where A(i) refers to the i-th column of the matrix A. The training process
with loss functional L = (1−α)LMSE +αLc

I with α ∈ [0, 1] is called targeted
weight decay in columns over the set I.

Observation 1. If I = {1, ..., n0} then Lc
I = Lwd.

Observation 2. By exchanging the columns of A for its rows in Defini-
tion 3.3, we obtain an equivalent definition for the targeted weight decay loss
functional over rows, Lr

I.

The previously defined loss functionals will have relevance when defining
the pruning scheme in Chapter 7.

3.2.2 Compression methods

There are three popular techniques for neural compression: pruning, quan-
tization, and distillation (see [10, Lectures 3-9]). This work will focus on a
pruning scheme, a method classified as a lossy, data-independent compression
method. However, future works may study other schemes like quantization,
distillation, or lossless methods to obtain a more compact yet high-quality
representation.

To be more precise, pruning refers to a method that assigns the value
zero to the parameters in θ that meet specific conditions. In the context of
this research, we will focus on the following definitions for pruning.

Definition 3.4 (Structured pruning). Given a sinusoidal neural network fθ,
and A ∈ Rn×m the middle weights.
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1. Under a row pruning criteria PCr : Mn×m(R) → {0, 1}n, the pruning
of rows is defined as the update of A for A · diag(PCr(A)).

2. Given a column pruning criteria PCc : Mn×m(R) → {0, 1}m, the prun-
ing of columns is defined as the update of A for diag(PCc(A)) ·A.

Figure 1: Row (column) pruning example applying a row (column) criteria
over the weights A.

Figure 1 shows an example of row and column pruning over the same
parameters θ. As the zero-ed rows (columns) of A hold no information, they
and all other weights canceled as a consequence of their change can ignored
during the storing process. For example, in the case of column pruning shown
in Figure 1, we could store a 3× 1 array for A instead of the original 3× 2
matrix; besides, the expression H2 is unused as it multiplies with the null
column. Then, we could also ignore the second row of ω and φ.

Several criteria for pruning a weight may depend on the task at hand.
We consider the weights information as their L1 norm (see Figure 2), and
the pruning criteria evaluated on the weights as the vector with:

• Zeros in the indexes of the rows (columns) with the least information
such that their added information constitutes less or equal to P% of
the total information.

• Ones on the remaining entries.
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Figure 2: Example of row pruning selecting the importance criteria as the
L1 norm of A. Taken from the Han et al. [10, Lecture 3].

4 Interpretation

The previous chapter defined the concepts and mechanisms used in this work
to create an efficient INR. This chapter provides an overview of the key
findings from Novello [15] applied in this work. It also exposes the insights
derived from those results to reinforce the results obtained from our methods.
The proofs for all theorems enunciated in this chapter are found on [15].

Precisely, we show that a sinusoidal neural network closely resembles a
Fourier series with coefficients, amplitudes, and phases derived analytically
from the components of the neural network. That connection helps under-
stand the relationship between input frequencies and generated frequencies.
Then, the upper bound defined in [15] serves as an inspiration to establish
the training schedule presented in Chapter 6.

For the following theorem let’s consider x̃ = [x, 1]T and Ã,Ω the aug-
mented matrices of A and ω, respectively.

Theorem 1. The coordinates hi(x) = sin
(
Ã sin(Ωx̃)

)
(Ã ∈ Rn×(m+1)) of

the sinusoidal MLP fθ’s hidden layer can be rewritten as

hi(x) =
∑
k∈Zn

αk(Aj) sin
(
⟨k,Ωx̃⟩+ bj

)
(2)

where αk(Aj) =
∏m

i=1 Jki(Aji) is the product of the Bessel functions of the
first kind evaluated over the elements of the row Aj.

By separating the bias term inside the sine function, it’s possible to obtain
a Fourier series-like representation,

f i
θ(x) = Ci

[ ∑
k∈Zn

(
Âkj sin

(
βk(ω)x

)
+ B̂kj cos

(
βk(ω)x

))]n

j=1

+ di (3)

where i ∈ {1, 2, 3}, βk(ω) = ⟨k, ω⟩ and Âkj = αk(Aj) cos(⟨k, φ⟩+ b), B̂kj =
αk(Aj) sin(⟨k, φ⟩ + b) are the coefficients associated with sine and cosine,
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respectively. An important fact to highlight is that Equation 3 is not the
neural network’s Fourier series as each generated frequency f can be obtained
by different linear combinations ⟨k, ω⟩ of the input frequencies.

Therefore, the coefficients Âkj, B̂kj are not the Fourier coefficients of fθ. It
would be necessary to find all solutions for the diophantine equation Xω = f
for each f ∈ N to obtain the Fourier representation for fθ by aggregating all
coefficients associated with the same frequency,

To analyze the implications of Theorem 1, the following toy example will
show a small neural network trying to fit a simple signal with and without
a-priori knowledge obtained from Equation 2.

Example 4.1. Given a periodic signal f : R → R : x 7→ sin(2π
p
x) with period

p, and a sinusoidal neural network fθ(x) = c sin(a sin(ωx+φ)+ b)+ b, fit the
neural network such that f ≈ fθ.

By using Equation 2, we would obtain

fθ(x) = c
∑
k∈Z

αk(a) sin

(
kω

2π

p
x+

(
kφ+ b

))
+ d

As a result, employing the Fourier theory simplifies the problem by equat-
ing all frequencies’ sine (and cosine) coefficients of both functions. But notice
that ω is a fundamental factor in deciding the frequencies appearing on fθ.
Therefore, ω = 2π

p
is a prudent initialization.

• k=0: By using the Fourier transforms we obtain:

f̂θ(0) = cα0(a) sin(b) + d = 0 = f̂(0)

and thus

d = −cα0(a)sin(b) (4)

• |k|=1: Based on Equation 2 follows the equality below,

cα1(a)Sω,φ+b(x) + cα−1(a)S−ω,−φ+b(x) = sin

(
2π

p
x

)
and using the facts that ω = 2π

p
, α−1(a) = J−1(a) = −J1(a) = −α1(a),

sine is an odd function along with the sum of angles for sine, the for-
mula above becomes,

2cα1(a) sin

(
2π

p
x+ φ

)
cos(b) = sin

(
2π

p
x

)
11



which implies the following equations,

2cα1(a) cos(b) = 1 (5)
φ = 2l for l ∈ Z (6)

• |k|=2m: Repeating the process for the case |k| = 1 and considering
that J−2m(a) = J2m(a) the result would be,

2cα2m(a) cos(b) sin

(
2m

2π

p
x+ 2mφ

)
= 0

so,

2cα2m(a) cos(b) = 0 (7)

• |k|=2m+1: By considering that J−(2m+1)(a) = −J2m+1(a), the equal-
ity would be,

2cα2m+1(a) sin(b) cos

(
(2m+ 1)

2π

p
x+ (2m+ 1)φ

)
= 0

and thus,

2cα2m+1(a) sin(b) = 0 (8)

From Equality 5 it’s clear that c ̸= 0 and cos(b) ̸= 0 and that implicates
that in Equality 8 α2m+1(a) = 0. From the infinite possibilities for φ and b,
we select φ = 0 = b as the nearest value (with high probability) from their
initializations that satisfies Equalities 6 and 7 (for all m ∈ Z), and that
choice forces d = 0 in Equality 4. Finally, from Equality 5 we conclude that
c = 1/(2α1(a)).

However, the value assigned for a is undecided as finding the same root for
several first order Bessel functions is an open problem until now. Thus, the
neural network will be an approximation for the target signal. Despite that,
the behavior of first order Bessel functions near the origin indicates that a
good approximation for a would be close to the origin, where Jk(x) > Jl(x) if
k < l (|x| < 1 and x ̸= 0) and all functions decay exponentially. Nevertheless,
the initialization of c is close despite c = 1/(2α1(a)) for a << 1 (meaning
α1(a) << 1) which slows down training as the update ∆c is small at each
epoch. By initializing c = 1/a from the beginning, Figure 3 shows faster
convergence with notably better quality.
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Figure 3: Fitting of target function f(x) = sin(2π
p
x) with p = 2 during 50000

epochs using different initializations for fθ. A premature stop indicates a
reduction in the loss functional less than 1e−9. (a) SIREN initialization with
fine-tuned ω0 = 10 has the worst performance. (b) Initialization with ω = 2π

2

has a good performance. (c) Model initialized with all considerations in the
example and training only parameters a and c demonstrates a much better
quality (+18 PSNR) with few training steps.

Despite being an over-simplified, well-behaved case, it’s possible to ex-
trapolate several ideas from the previous example to obtain a more efficient
representation.

First, we chose ω based on the (known) frequency present in the signal.
In this particular example, if ω ̸= ±2π

p
, a good representation would have

been impossible as the frequency one would not have been present on the
series defined by Equation 2. When fθ where m > 1, this doesn’t necessarily
happen as input frequencies may introduce generated frequencies. However,
initializing with the target signal’s dominant frequencies guarantees smoother
training (see Theorem 2).

Rather than having trouble fitting the target signal frequencies, the at-
tenuation of frequencies not present (noise) in the original signal seems to
pose a bigger problem, as seen in the previous example. Indeed, by consid-
ering only frequencies ⟨k, ω⟩ such that |k|∞ < B, Novello [15] deduced that
fθ may consider (2B+1)n−1

2
, an exponential number of (potentially different)

generated frequencies.

The generation of unwanted frequencies presents the necessity to control
the network’s bandwidth, centering the representation’s energy along low fre-
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quencies. An implicit mechanism used in the example to handle this was to
consider a small enough value for a coupled with a correct initialization of
input frequencies, as third and higher order Bessel functions are practically
zero around a small neighborhood around the origin. This indirect obser-
vation will become a key fact in the bound scheme presented in Chapter
6.

In a more general sense, it is possible to use Theorem 1 to get a rough
inkling of the INR’s anatomy and the role of each component during training.
It’s evident from Equation 2 that generated frequencies are determined by
the input frequencies via linear combination, with amplitudes dependant on
the rows Aj as well as first and hidden biases b and φ (see Novello [15,
Corollary 1]). Adding the shift φ on the initial sinusoidal layer transforms it
into a vector of harmonics with frequencies and phases determined by ω and
φ, respectively. Finally, Equation 2 shows that the final matrix C weights
the terms of the n infinite sums and d adjusts the network’s mean.

The closed formulation of coefficients αk(Aj) is used in Novello [15] to
determine an upper bound, which shows that if |Aj|∞ is small, the coefficients
Âk and B̂k decay exponentially fast as |k|∞ grows.

Theorem 2. The amplitude αk(a) associated with frequency ⟨k, ω⟩ in Equa-
tion 2 satisfies the following inequality:

|αk(a)| <
m∏
i=1

(
|ai|
2

)|ki|

|ki|!

Consider the order of a frequency ⟨k, ω⟩ as the integer |k|∞ and |A|∞ < 1.
Then Theorem 2 would indicate that

|αk(Aj)| <
m∏
i=1

1

2|ki||ki|!
(9)

for all k ∈ Zm, showing that higher order frequencies have negligible
coefficients. Therefore, most of the energy is concentrated around low order
frequencies, rendering the selection of input frequencies fundamental for the
fitting task. Yang et al. [37] described this phenomenon, refering to it as the
spectrum concentration property of INRs.

The initialization proposed Sitzmann et al. [27] that made it possible the
use of sinusoidal neural networks in practice follows both principles stated
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before, initializing A ∼ U
(
−
√

6
m
,
√

6
m

)
and ω ∼ ω0U([−1/2, 1/2]) with ω0

a tunable hyperparameter. The first initialization satisfies the conditions for
Equation 9 (as most applications require m >> 1), while in the second one,
ω0 scales the (real-valued) frequencies to an appropriate range.

The observation regarding high order frequencies might prompt us to
initialize the input frequencies with low frequencies. By doing this, the model
will prioritize fitting low frequencies first and gradually increase the influence
of higher order frequencies during training aligned with spectral bias’ theory.
A deeper discussion about how to choose the initial values for the parameters
θ will be held in the next section.

5 Initialization

Section 3.1 presented an initialization scheme aligned to the theory developed
by Zell et al. [40], where the first sinusoidal layer is a vector of harmonics with
fixed integer frequencies. Based on Theorem 1, ω determines the frequencies
that could appear in the reconstruction’s spectrum of a model with such a
setting.

A naive approach to establishing the initial frequencies may consider com-
puting the image’s FFT and initializing ω with the dominant frequencies of
the signal. However, the success of models such as SIREN shows that sinu-
soidal neural networks have the potential to learn the signal’s spectrum with
no other information about the target.

The next chapter will address the influence of input frequencies’ choice
and the model’s capacity to approximate the target spectrum with a re-
stricted bandwidth. Then, Section 5.3 will present problematic cases that
may arise from inadequate initialization. Finally, Section 5.2 discusses the
impact of ω over the fitting.

5.1 Frequencies’ Generation

This section will address the model’s prowess in learning new frequencies
based on the initialized ones. Figure 4 shows that a sinusoidal neural network
is capable of fitting a signal with high frequencies (i.e., f(x) =

∑100
k=1 sin(kπx))

despite all initial harmonic atoms having frequency one.
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A more intuitive demonstration of the increase of frequencies introduced
by each hidden layer is given in Figure 4. There, two models with the same
amount of parameters but with one and two hidden layers learn the same
signal. In the first stage of training, the deeper model’s FFT prediction
presents a broader bandwidth than its counterpart, being able to introduce
higher order frequencies.

Figure 4: FFT prediction of a neural field trained to fit the signal∑100
k=1 sin(kπx) during 500 epochs. Initialization of input frequencies ω = 1.

(a) Prediction of a sinusoidal network with depth 3 and 2995 parameters.
(b) Prediction of a single hidden layer’s sinusoidal network with 2996 param-
eters.

The previous analysis agrees with the common practice of favoring deeper
architectures instead of wider ones and also exhibits commonly known prob-
lems of sinusoidal neural networks: Deeper models are prone to noisy recon-
structions and are unstable to train.

A factor that may influence those phenomena is the lack of mechanisms
to control the generation of high-order frequencies when the model is over-
parametrized. We consider two approaches to tackle this problem: Defining
an adept initialization and employing a training scheme. Chapter 6 will
present a methodology to tackle this problem using a training scheme, and
the following section will analyze the initialization as a tool to avoid a noisy
representation.
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5.2 Initialization Experiments

It’s natural to consider custom initial weights for each signal that accounts
for its bandwidth and frequency content. However, finding such initialization
may be costly and doesn’t escalate well with higher dimension signals.

Figure 5: Reconstruction of networks with different bandwidths. The lower
row presents the FFTs computed from the images above. (Left) Rasterized
image used as training data. (Middle) Model with input frequencies ran-
domly selected from the interval ([−16, 16] ∩ Z)2 − (0, 0). (Left) Model with
integer input frequencies randomly chosen over the Nyquist Limit (128).

For instance, Figure 5 demonstrates that the straightforward strategy of
randomly selecting input frequencies with ω0 = 128 (the Nyquist limit) leads
to a noisy reconstruction. Since the input frequencies are chosen uniformly
up to the maximum frequency on the image, and the network generates
multiples of these input frequencies, frequencies beyond the Nyquist limit
are likely to appear in the reconstruction.

On the other hand, selecting an adequate value for ω0 emerges as a mech-
anism to control the generated Fourier spectrum (see Figure 5, middle’s FFT
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prediction), leading to a better quality reconstruction.

Figure 6: Loss evolution of single hidden layer’s neural networks with ω ∈
R2,A ∈ R2×2 fitting the signal f(x) = 0.5 sin(2πx) + 0.5 cos(3πx).

When information about the signal spectrum is available, it becomes
possible to define ω by picking its n−th dominant frequencies. Figure 6
shows that the model converges faster with such coefficients, but they aren’t
indispensable for a good reconstruction.

Considering the spectral bias and the sinusoidal neural networks’ ability
to generate exponentially new frequencies, this work uses a small bandwidth
ω0 ≤ 30 for its experiments unless otherwise stated.

5.3 Problematic Cases

Although we have been selecting the input frequencies with no restrictions,
determined initializations may hamper training or render reconstruction im-
possible. We present two problems that may arise from inadequate initial-
ization and ways to detect and solve such issues.

First, observe that Figure 7(b) shows a reconstruction given by a sinu-
soidal neural network of period two that presents a problem with the re-
construction’s period. Indeed, observing the extrapolation of the image (see
Figure 7(c)), a repetition pattern is discerned along the diagonals (defined
by white, dashed lines).
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Figure 7: (a) Ground truth image. (b) A faulty representation is given by a
model initialized with only odd input frequencies. (c) Image extrapolation
showcasing a diagonal periodic pattern.

The network depicted in Figure 7 considered odd frequencies, but similar
phenomena occur in other cases. This includes scenarios where ω is composed
of even frequencies (Figure 8(a)), or exclusively positive ones (Figure 8(b)).
Specifically, in the case where the input frequencies are odd, and the network
period is 3 (Figure 8(c)), we observe an overlap of images, confirming that
the issue arises from the incongruence between the period of the network p
and the period generated by the input frequencies.

To obtain a rigorous classification of the set of initializations with sub-
period generation, let’s consider the hidden neuron hi(x) as the i-th co-
ordinate of vector SA,b ◦ H(x). Then, using Theorem 1 it’s obtained the
expression

hi(x) =
∑
k∈Zn

αk(Ai) sin(g(x, θ))

where
g(x, θ) =

〈
k,

2π

p
ω1

〉
x+

〈
k,

2π

p
ω2

〉
y + ⟨k, φ⟩+ b,
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Figure 8: Several cases of faulty reconstruction obtained by specific initial-
izations of ω0. (a) Reconstruction from a model with even input frequencies.
(b) Reconstruction with ω0 = [(k, l) : k, l ∈ {1, 10, 100}]. (c) Extrapolation
of reconstruction with odd input frequencies and period p = 3. The black
box determines the injective domain of the 3-periodic function and the blue
box demarcates the image domain.

Let ωj represent the j-th column of ω, and let x = [x, y]. For simplicity,
we will omit the index i from hi. Note that h is a periodic function with a
period of p. However, there is no assurance that a sub-period will not emerge.

If h has a sub-period then h(x, y) = h(x + p
q
, y + p

l
) with p/q, p/l sub-

periods in axis X and Y , respectively. Now,

h

(
x+

p

q
, y +

p

l

)
=

∑
k∈Zn

αk(Ai) sin

(
g(x, θ) + 2π

〈
k,

ω1

q
+

ω2

l

〉)

then, h (and consequently fθ) manifests sub-periods when
〈
k, ω

1

q
+ ω2

l

〉
∈ Z

for all k ∈ Zn. A visual test can detect a sub-period problem, and it is
enough to introduce a new input frequency such that

〈
k, ω

1

q
+ ω2

l

〉
/∈ Z for

some k ∈ Zn to solve it.

The second problem arises when questioning the need to choose the initial
frequencies for each signal. Figures 3 and 6 show that it is possible to learn
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Figure 9: Graphics obtained when fitting the signal f(x) =
∑100

k=1 sin(kπx)
with ω = 1 and ω0 (as defined by [27]) adjusted to 1000. (a) Loss evolution
during training. (b) Histogram of the learned network’s hidden matrix A.

a signal by initializing ω = 1 and appropriately setting ω0. However, this
parameter strongly affects the stability of the training and tends to introduce
noise into the reconstructions.

Figure 9(a) reflects the instability even in advanced stages of training.
To explain this phenomenon, observe the weight distribution of the hidden
matrix A (see Figure 9(b)). The values of Ai are far from the origin, then
the terms αk(Ai) =

∏n
j=1 Jkj(Aij) may become significant for |k|∞ >> 1.

Therefore, the neural network uses high order frequencies to fit the signal,
which can cause artifacts or overfitting.

Furthermore, values greater than 1.4 can be roots of first-order Bessel
functions. Therefore, if Aij is the root of a Bessel function Jl, all the gen-
erated frequencies ⟨k, ω⟩ such that kj = l will have zero coefficient in that
epoch. The disappearance of an infinite number of frequencies and subse-
quent appearance when updating the value of Aij is most likely one of the
main factors destabilizing training.

Consequently, when encountering a training instability problem using low
initial frequencies and a high value of ω0, it is advisable to reduce ω0 and
increase the number or bandwidth of the initial frequencies.

Note that allowing a high value of ∥A∥∞ generated various problems
during training, so controlling the range of values that A can take could
influence learning positively. Indeed, the following chapter will present a
scheme that restricts the growth of A, obtaining stability and control of the
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network’s bandwidth.

6 Bounding

According to Theorem 2, the coefficients of the generated frequencies are
bounded by an expression dependent on the norm of the rows Aj of A. In
particular, Equation 9 shows that by limiting the infinite norm of A by a
sufficiently small value, higher order frequencies become negligible.

For example, considering a neural network with matrix A ∈ R5×1 such
that ∥A∥∞ < 1 and |k|∞ > 5, the Theorem 2 indicates that |αk(Aj)| <∏m

i=1
1

2|ki||ki|!
≤ 1

255!
≈ 2.604e−4. The previous example exhibits that frequen-

cies at or above order 5 exert reduced impact on the representation.

Thus, by limiting A, it is possible to control the frequency band of the
reconstruction so that the generated frequencies saturate around small mul-
tiples of the input frequencies. We call this process as bounding.

Definition 6.1 (Bound). Given a matrix A, the bound of A is defined as
the matrix with entrances fB(Aij) where B ∈ R+ and

fB(x) =


max(x,B) if x ≤ 0

min(x,B) if x > 0

Figure 10: Illustrative example of the bounding process considering a parti-
tion of ω in low and high frequencies.

22



We establish a training scheme that bounds the hidden matrix A after
each gradient descent step. Figure 10 shows a toy example of the bounding
process in a 4× 5 hidden matrix A with two blocks.

The constant B becomes a hyperparameter that limits A, and from Fig-
ure 11, we can appreciate the bandwidth control of the representation that
it exerts. Observe that with constant bounds, the spectral distribution of
the reconstructed model considers all initial frequencies having the same im-
portance over it. However, this is seldom true for images, as it’s known that
most energy concentrates around low frequencies of the spectrum.

Based on this fact, we consider restricting each input frequency based
on its possible impact on the reconstruction. Based on the spectral bias
phenomena, we partition the model spectrum as shown in Figure 19, defin-
ing L limits of the partition and B a decreasing vector of bounds as new
hyperparameters to finetune.

Formally, we define a restriction of the norm to the columns of A accord-
ing to the frequency with which they are associated. The above is motivated
by the following example: Let fθ : R → R be a sinusoidal neural network such
that ω = [1, 100], then the generated frequencies have the form k · 1+ l · 100.
By allowing |k| >> 1, the generated frequencies will be more likely to be
present in the image frequency band. On the other hand, allowing |l| >> 1
indicates a greater risk of creating frequencies outside the Nyquist limit, in-
troducing noise.

Formally, consider the vectors L ∈ [0,∞)l × {∞}, B ∈ [0,∞]l with L
sorted increasingly and L1 = 0. Then, block bounding can be defined as the
process of bounding each column Aj of A with hyperparameter defined as
the Bi such that the frequency ωj related to Aj satisfy

max(|ω1
j |, |ω2

j |) ∈ [Li, Li+1), i ∈ {1, ..., l}.

As the coordinates Li for i ∈ {2, ..., l} completely determine L, we simplify
notation by defining L only through those values. Figure 10 illustrates the
block bounding process with l = 2.

When applying bounding with parameter Bi = ∞ for some i, it’s equiv-
alent to the default training (no bounding) for the weights on that block.

Table 13 presents the ssim metrics when considering several values for
B and L, and ω0 = 30 for the kodak monumentum image. Observe that
quality over the reconstruction worsens when selecting small limits for low
frequencies, and the best metrics consider L3 = 20.
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Figure 11: Fitting the image during 3000 epochs with different bound val-
ues. (Above) Reconstructions obtained from a training bounding the hidden
matrix A. (Below) Spectrum of the images above.

To understand this phenomenon, observe the initial frequencies’ distri-
bution Figure 12 (b) that shows a higher frequency count in values over
26. Then, as bounds limit the high frequencies, the model restricts a large
quantity of initial atoms from generating new frequencies. Indeed, see in
Figure 13 that instead of introducing artifacts, the reconstruction done with
B = [1.3, 0.6, 0.05] and L = [5, 10] which presents one of the worst recon-
struction has a similar appearance to a softened version of the image, showing
promise as a filtering technique for sinusoidal neural representations.

As the spectral partition defined imposes a non-uniform distribution of
input frequencies, we consider different initializations for the initial weights
more aligned with the techniques used in this work.

6.1 Initialization and Bounding

We consider initializing the model with frequencies concentrated along the
first bounding limit. Then, as shown in Figure 14, besides having a visibly
higher quality, the generated frequencies appear around initialized frequen-
cies, corroborating the bias of learning low order frequencies first.
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Figure 12: (a) Table of SSIM metrics of trained models using different values
for B and L. (b) Histogram of frequencies (in absolute value) appearing along
the axes X and Y.

Figure 13: Representations’ zoom (×2) (a) For a model trained with B =
[1.3, 0.6, 0.05] and L = [5, 10]. (b) For a network with B = [1.3, 0.6, 0.1] and
L = [5, 20].

Then, by distributing the frequencies with symmetry as shown in Figure
14(d), the spread of frequencies along the representation’s Fourier spectrum
is more homogeneous, becoming a good initialization for all sorts of images.

Finally, observe that unlike the diffusion scheme, where sometimes stop-
ping the training earlier renders higher quality images by avoiding undesir-
able overfitting, the noise appears from the beginning of our training. Figure
14(a)-(b) shows that this phenomenon of high-frequency noise happens very
early in the training. Then, most of the training steps focus on denoising the
reconstruction.

25



Figure 14: Reconstruction’s evolution during training where ω = {(i, j) :
i, j ∈ {1,−1, 3,−3, 10,−10, 50,−50}} and Nyquist limit is Ω = 128. (a)
Train with Sitzmann et al. [27] scheme. (b) Train with bounding scheme. (c)
Distribution of input frequencies along the domain Z2 where the center of
the image corresponds to frequency (0, 0). (d) Spectrum of a network trained
using bounding during 300 epochs.

7 Compression

While employing the mean squared error loss function, LMSE, in the training
process, there is no assurance that the model is learning without introduc-
ing redundancy. Indeed, Johnson [11] presented in his lecture an illustrative
example in which the elements of the last sinusoidal layer are highly corre-
lated. As these components will be linearly combined to form the output of
the function, it is reasonable to question whether there is a better scheme
capable of decorrelate each output atom, and if so, whether it is possible to
perform the same task with a network with a smaller number of parameters.
This hypothesis is also known by the name of Lottery Ticket Hypothesis
[7, 9].

This chapter explores a method to mitigate the redundancy inherent in
sinusoidal networks. This approach examines the initialization method de-
scribed earlier, which treats the elements of the first layer as atoms of the
Fourier basis. Drawing inspiration from the works of Johnson [11] and Ben-
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barka et al. [1, section 3.4], we implement a weight decay scheme (refer to
Definition 3.2) coupled with a structured pruning process. This combined
strategy effectively trims down the network size, mitigating accuracy loss.

7.1 Method

The sinusoidal neural network fits the signal using an optimization algorithm
that seeks to minimize the loss functional LMSE. Then, by considering a new
functional,

Lreg = (1− α)LMSE + αLwd, α ∈ [0, 1]

as the target function to minimize, the network will train to reconstruct the
image conditioning the model by applying a regularization on the parameters,
introduced by Lwd. This term will induce the values of A to be close to zero,
gathering most of the reconstruction’s energy around low order generated
frequencies.

Formally, let fθ = CSA,b ◦ H be a fully trained neural network with
A ∈ Rn×m, ewd, erec, etotal ∈ N the number of epochs to train with weight
decay (α ̸= 0), with the usual loss (α = 0) and in total, respectively, and
Tp ∈ [0, 1] a pruning threshold that indicates how much information can lose
per pruning. The pruning scheme is given by,

1. Train fθ during ewd epochs with loss functional Lreg.

2. Select a subset I ⊆ {1, ..., n} of row (column) indices based on the crite-
ria: The greatest subset of {1, ..., n}({1, ...,m}) such that

∑
i∈I ∥Ai∥1 <

Tp (
∑

i∈I

∥∥Ai
∥∥
1
< Tp). Prun the rows (columns) with those indices.

3. Fine-tune fθ using the loss functional LMSE during erec training steps.

4. Consider the stop criteria: The number of epochs elapsed e ≥ etotal or
I = ∅. If met the stopping criteria, stop the process. Otherwise, return
to step 1.

Before testing the method, it’s crucial to note that Chapter 4 delved
into the impact of sinusoidal neural network weights on the reconstruction
process. This understanding allows us to anticipate some effects that pruning
might induce on the reconstruction.
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Observe that two coordinates of the sinusoidal layer SA,b ◦ H(x) are in-
finite linear combinations of harmonics with equal frequencies but each with
different coefficients. Therefore, pruning a row of A affect exclusively the
coefficients Âk and B̂k, and thus the configuration of generated frequencies.

On the other hand, we nullify all terms associated with ωi when pruning
the i-th column of A. Therefore, in the harmonic expansion of Theorem
1, all generated frequencies with non-zero coefficient in the i-th component
(⟨k, ω⟩ with ki ̸= 0) will disappear. Therefore, it’s possible to lose generation
capacity as the model doesn’t have access to the same set of frequencies to
represent the image.

In that sense, pruning columns agree with matching pursuit theory, as
the process naturally selects those initial harmonic atoms Hi that exert the
most influence over the reconstruction.

7.2 Experiments

During the pruning process, several hyperparameters directly impact the
quality of the reconstruction. We conducted an ablation study concerning
the following values: the regularization parameter α, the norm used in the
weight decay functional, and the effect of cutting rows, columns, or both
during the pruning process. The proposed method is tested on the Kodek
dataset to analyze its utility, and a variation of the scheme considering the
mathematical approach to the problem is presented.

7.2.1 Regularization parameter α

During the pruning process, the parameter α measures the influence of the
regularization term on training. Intuitively, α sets the amount of information
corrupted to reduce the model.

To find suitable values for α, let’s assume that α = αs·αf , where αf : N →
[0, 1]. Thus, it suffices to find the appropriate function scale and subsequently
test the training behavior with different definitions of αf . We seek an αs that
offers the best trade-off between weight reduction of the matrix and SSIM of
the reconstructed image.

When training a model using weight decay with α = 1e−5, 1e−6, 1e−7,
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Figure 15: (a) Fourier spectrum after training using weight decay with con-
stant α = 1e − 5, 1e − 6, 1e − 7, respectively. (b) Candidates for αf . (c)
Histogram over training epochs (where intensity measures the number of
weights in the range given by y) when using Lwd with α = 1e − 6. (d) His-
togram over training epochs with α = 1e− 5.

the following similarity (SSIM) values are obtained: 0.88, 0.79, and 0.58.
Since the SSIM metric of the original trained model is given by 0.88, αs =
1e− 7 seems like an ideal value. However, note in Figure 15 (d) that at this
scale, the weights distribution of A disperses from the origin during training.
On the other hand, Figure 15 (c) shows the weights of A accumulating at
the origin when training with α = 1e − 6, and thus we consider 1e − 6 as a
reasonable value for αs.
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Consider the function αf from one of these two families of functions:
increasing functions and piecewise functions defined as

g(x) =

{
g1(x) if x ≤ ewd

2

g2(x) if x > ewd

2

where g1,−g2 are increasing functions (see Figure 15 (b)). The studies con-
ducted showed that the functions of the second class manage to reduce the
norm of the matrix A and achieve a quality closer (on the scale 1e − 5)
to a representation obtained with the default training scheme compared to
increasing functions (scale 1e − 4). Then, we consider αf = g, where g is
a piecewise function as above with g1, g2 being quadratic functions where
g1(0) = 0, g1(± ewd

2
) = 1, and g2(ewd) = 0, g2(ewd ± ewd

2
) = 1, as it showed the

most promising results among the second class.

Note that the principle behind weight decay shares some similarity with
bounding since both reduce the range of values that the weights of A can
take. Indeed, Figure 15 (a) shows the limiting effect of α on the spectrum
of the reconstruction. However, as seen earlier, weight decay has a more
detrimental repercussion on the representation’s quality than bounding.

7.2.2 Weight decay norm

When defining weight decay, we choose the L1-norm as a proxy for the L0-
norm, following a similar scheme as the one proposed in compressive sensing
theory. A pruning process is applied to each image in the Kodak dataset
(using the same seed), and we compare the accuracies of the respective re-
constructions. The experiments show that no norm has a significant advan-
tage over the other. Therefore, the experiments using weight decay will use
L1-norm by default.

7.2.3 Pruning components

The rows and columns of the network play different roles in the reconstruction
process. To measure the impact of reducing one of these components, let’s
consider an algorithm that targets only the rows, only the columns, and rows
and columns alike.

Figure 16 shows the average accuracy obtained by reducing over 50%
of the neural network parameters. It indicates that cutting lines is more
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Figure 16: Accuracy with confidence intervals of the pruning method. The
scheme pruned over 50% of the columns, rows, or both of a network fθ
with A ∈ R300×300 during 100000 epochs, and the confidence intervals were
obtained using kodak dataset. (Left) SSIM. (Right) PNSR.

detrimental to reconstruction than the other two schemes. While it is true
that reducing weights along rows to values near zero is easier and introduces
fewer instabilities at the beginning of training, the model achieves better
fine-tuning when eliminating columns.

The previous results show that by allowing the network to implicitly
choose the architecture (rows-columns ratio) that provides greater represen-
tation capacity, a hidden matrix such that n > m is preferred. In the con-
text of matching pursuit, the model is more favorable to reconstructing using
many simple functions (output atoms) than a few complex functions.

On the other hand, Figure 17 shows a comparative accuracy loss when
pruning models with different initialization settings. As seen in the graphic,
our pruning method allows us to reconstruct the image with more than 70%
accuracy even when pruning 75% of the weights of A. It’s worth noting that
even after manually selecting the initial frequencies, the model retained the
structure obtained from setting the frequencies to integers. As a result, it
performed nearly identically to the case with random initialization.

Moreover, we compare pruning a model with our initialization method
and pruning a model with the initialization scheme defined by [27]. When
pruning 25% of weights, our method ensures almost no loss in quality (at
least 99.8%), whereas SIREN exhibits a reduction in accuracy (87.7%).

31



Figure 17: Accuracy loss due to pruning, where the accuracy is relative to
the pre-pruned reconstruction. ’custom’ refers to a hand-picked initialization,
’random’ is a random choice of initial weights and siren using the first layer
initialization defined in [27].

7.2.4 Targeted weight decay

Values of α close to 1 induce the matrix A to approach zero, and increasing
the influence of the regularization parameter further degenerates the rep-
resentation, trending towards the constant zero function. This argument
highlights an issue with the previously used weight decay, as the objective is
not to obtain a representation with null A but to zero out the values of A
with less significance.

Therefore, consider the following modification to the algorithm presented
above,

1. Train fθ during ewd epochs with loss functional Lreg.

2. Select a subset I ⊆ {1, ..., n} of row (column) indices based on the crite-
ria: The greatest subset of {1, ..., n}({1, ...,m}) such that

∑
i∈I ∥Ai∥1 <

Tp (
∑

i∈I

∥∥Ai
∥∥
1
< Tp).

3. Apply targeted weight decay in rows (columns) over the set I during
etwd epochs.

4. Prun the rows (columns) a such that ∥a∥ < Tn.
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5. Fine-tune fθ using the loss functional LMSE during erec training steps.

6. Consider the stop criteria: The number of epochs elapsed e ≥ etotal or
I = ∅. If the stop criteria is reached, stop the process, otherwise return
to step 1.

where etwd ∈ N and Tn ∈ [0,∞]. Note that under an appropriately chosen
set of parameters, this algorithm does not account for the degenerate solution
fθ ≡ 0, even in the extreme case of α = 1.

Figure 18: (Left): Ground truth and neural representation (A ∈
R800×200). (Right): Effect of structured pruning of 10% of representation’s
rows/columns without fine-tuning. (a): Row pruning after applying targeted
weight decay maintains structure while losing intensity. (b): Row pruning
after training with weight decay keeps intensity but introduces artifacts. (c)
& (d): Pruning columns greatly impacts the representation.

In step 2, the model identifies the rows (columns) of the network that
appear to contain the least information. Subsequently, in step 3, weight
decay guides the training to attempt to nullify these weights. If any of these
rows (columns) are indeed essential, step 4 ensures they are not removed.

More formally, let’s consider that the initial approximation derived from
the reconstruction is defined in a space of dimension n. Intuitively, one
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might propose that during the weight decay process, the goal is to find an
approximation closer to the origin of that space. Conversely, targeted weight
decay seeks a solution belonging to a subspace of that space with a dimension
m < n.

In Figure 18, the distinction between applying and not applying targeted
weight decay is evident. For the case of lines, it is observable that pruning
rows only impacts the intensity of the image. In the standard scenario, arti-
facts typical of sinusoidal networks are introduced. On the other hand, it is
noticeable that targeted weight decay preserves more information compared
to weight decay when pruning columns.

Given the insights from the preceding observations, the next chapter will
delve into pruning, considering all the aforementioned refinements to the
algorithm.

8 Compression and Initialization

When pruning a sinusoidal neural network, the matching between the defined
ω and the image’s dominant frequencies is an important factor in guarantee-
ing good quality with fewer parameters. This chapter considers the problem
of finding suitable dictionary atoms to obtain a compact representation of
the model.

Using the bounding training scheme it’s possible to define a partition of
A’s columns into blocks as

A(i) := {Aj : ωj ∈ [Li, Li+1)}.

where follows from the definition that
∥∥A(i)

∥∥
∞ < Bi.

When a weight Aij from A has saturated to ±Bk, Theorem 1 indicates
that its related frequency ωj is used to introduce as many generated frequen-
cies as the bound allows. Then, having a block A(k) with many weights that
saturated to ±Bk could signal a strong relationship between the range of
input frequencies [Lk, Lk+1) and the image Fourier spectrum.

We use this concept of saturation over each block to measure the de-
pendence of the reconstruction over the frequencies in each region of the
spectrum.
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Definition 8.1. Given a closeness tolerance ϵ > 0, the importance criteria
Ik that characterizes the reconstruction dependence over the block A(k) is the
value

Ik =
∑

w∈A(k)

Bk
max{|w| −Bk + ϵ, 0}

|B|i

The criterion is a weighted measure of the values of A that saturate to
the bound. Refer to Figure 19 for a toy example of column selection criteria.

Figure 19: (a) Illustration of spectrum partitioned by L with bounds B. (b)
Toy example of the criteria used to add columns.

Given the importance criteria defined by B and L, nadd, Nadd ∈ N the
number of columns to add at once and in total (with nadd|Nadd), erec, etotal ∈ N
the number of epochs to train before adding a column and to train in total,
and ϵ > 0 a closeness tolerance, we define the algorithm as follows:

1. Train fθ during erec epochs.

2. Compute Ik for each block Bk.

3. For Is = max{Ik : k ∈ {1, ..., l}}, add nadd new columns and link them
to frequencies in the range [Ls, Ls+1)× [0, Ls+1)∪ [0, Ls+1)× [Ls, Ls+1).
If there are two maximum criteria Is1 and Is2 , select the one with the
lower si.

4. If the total number of columns (epochs) added up this point is equal
to Nadd (etotal), stop iterations. Otherwise, go back to step 1.
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Observe in Figure 20 that an image trained with a gradual increase of
input frequencies outperforms a model fitted with a uniform spectrum re-
stricted to an ill-fitted bandwidth. In such instances, it is preferable to con-
trol the generated frequencies rather than train with a network with more
parameters.

Figure 20: Training of a model with ω0 = 60 during 10000 epochs. (a) Zoom
in of reconstruction obtained from an adding columns’ scheme with starting
hidden matrix A ∈ R18×300 and final hidden matrix A ∈ R178×300. (b) Zoom
in on the reconstruction with base training. (c) Input frequencies of the final
model trained with adding columns’ scheme. (d) Input frequencies randomly
selected from Z2 with bandwidth ω0 = 60.

Moreover, the criterion selects frequencies in line with spectral bias, choos-
ing low ones at the beginning of training and selecting higher ones when nec-
essary. As such, 20(c) shows that selected frequencies center the distribution
of frequencies around the origin.
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9 Conclusions

This work proposed several methods to improve the initialization, training,
and efficiency of sinusoidal neural networks. First, we defined an initializa-
tion strategy that provided the mathematical ground to work the follow-
ing methods. Then we introduced a bandwidth control scheme that offered
higher quality representations with no additional training cost, which was
used to create an architecture search algorithm. Finally, we studied com-
pression over sinusoidal neural networks using structured pruning, exploiting
the framework given by our initialization.

Our contributions aimed to present strategies that could solve problems
present in sinusoidal networks such as noisy reconstructions in deep (sinu-
soidal) models or training instabilities. As such, future directions could con-
sider studying the implications of our techniques in deep models or further
developing the theoretical framework by using diophantine equations and
probability theory.

Another future work would aim towards a complete compression pipeline
to transform sinusoidal neural networks in real-time, high-quality image rep-
resentations.
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