
Laboratório VISGRAF
Instituto de Matemática Pura e Aplicada

Real-Time Rendering of Neural Radiance Fields

Thales Magalhaes, Luiz Velho (supervisor)

Technical Report TR-24-01 Relatório Técnico

January - 2024 - Janeiro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.



Real-Time Rendering of Neural Radiance Fields
(Work-in-Progress)

Thales Magalhães

Abstract
This technical report describes a work-in-progress project which aims

to implement real-time rendering of neural radiance fields (NeRF) inside
the Unity platform. It is primarily based on the method developed by Yu
et al. [17] which works by caching the results of the NeRF network us-
ing a sparse voxel octree (SVO) structure which can be efficiently queried
using GPU acceleration. With our method, scenes containing a combina-
tion of NeRF and mesh-based assets are rendered using a hybrid pipeline
developed as an extension of an existing, fully-featured raster renderer.
Our implementation of this method is based on widely available graphics
hardware functionality.

1 Introduction
Mildenhall et al. [10] introduced the concept of neural radiance fields (NeRF)
as a method for synthesizing novel views of complex 3D scenes by extrapolating
from relatively small set of reference (RGB) images. The technique produced
impressive results while addressing a number limitations of previous methods
by being capable of reproducing complex, view-dependent effects at high reso-
lutions. It did this by using a continuous, volumetric representation of scenes
based on a relatively simple variety of feedforward neural network known as a
multilayer perceptron (MLP). These networks could be iteratively optimized to
closely match the reference images for each scene using well-known deep learning
techniques.

The release of [10] was quickly followed by a number of publications from
other researchers. Some aimed at extending the idea of using NeRFs to other
contexts, such as large scale scenes [19], video [4, 8, 16], and animation [11, 13].
Others focused on addressing limitations of the original method by improving
training times [3], adding support for relighting [1, 6, 15], etc.

Among these there have been many attempts at improving NeRF’s inference
time and adapting the method to real-time applications [5, 7, 14, 17]. While
these methods have been largely successful at achieving interactive framerates,
they were focused on the task of rendering individual NeRF scenes. This came at
the expense of their capability to render more complex configurations with mul-
tiple NeRF scenes or to combine them with other 3D representation formats (i.e.

1



triangle meshes). Moreover, their implementations often rely on vendor-specific
hardware acceleration technology to achieve their advertised performance char-
acteristics, making them inaccessible to a significant portion of users.

With this project we aim to develop an efficient method of rendering NeRF
scenes which is compatible with current industry standard real-time rendering
techniques. We base our method on Yu et al. [17]’s strategy of caching the re-
sults of a modified NeRF network using a sparse voxel octree (SVO) structure.
This network is trained to encode view-dependent effects using spherical har-
monic coefficients, reducing the size of it’s input space (and the resulting cache).
NeRF volumes are then rendered through ray-marching (using hardware accel-
eration) as part of a hybrid rendering pipeline. This pipeline is developed as
an extension to an existing rasterization-based pipeline using widely available,
vendor-agnostic GPU functionality. We provide a proof-of-concept implemen-
tation of our method using the Unity platform.

2 Related Work
Garbin et al. [5] present a novel method (FastNeRF) for accelerating NeRF
inference through caching. Caching the output of a vanilla NeRF network would
be unfeasible as it would require enough samples to capture the entire 5D input
space of the network. To solve this, the authors propose to split this network in
two parts: one MLP which captures position-dependent features and another for
reconstructing view-dependent effects. The outputs of these two networks are
then combined using the inner product to produce RGB color values. Although
this factorization scheme is not based on a physically-based rendering model,
the authors note that it is inspired by well established rendering techniques (i.e.
spherical harmonic lighting). However, despite achieving a significant reduction
relative to the theoretical memory requirements for such a cache, often the
resulting caches produced by this method are still too large for the average
consumer GPU (see Table 1).

Another method based on reducing the input space of NeRF’s network and
caching the model’s results is presented by Hedman et al. [7]. Here, the authors
take an approach inspired by deferred shading techniques in which diffuse and
specular colors are computed separately. To do this, they train their network
(SNeRG) to predict both a diffuse color and a view-independent feature vector
for every point in the scene. During rendering, a separate decoder network is
used to predict specular colors based on the accumulated the value of these
feature vectors. Crucially, this step is only performed once per ray. The results
of this network are then sampled and cached using a custom sparse voxel grid
data structure.

Yu et al. [17] describe a similar strategy for achieving real-time inference
through caching: They make the input to their model view-independent by
training a new network (NeRF-SH) which encodes view-dependent effects using
a fixed number of spherical harmonic coefficients. This modification reduces
the input space of the network such that caching it requires only O(n3) sam-

2



ples instead of O(n5) (where the resolution of the cache is given by n). These
samples are then stored using a sparse voxel octree structure. Section 3.1 and
Appendix A cover aspects of this method’s implementation in more detail.

Reiser et al. [14] (KiloNeRF) take a rather different approach by partitioning
the monolithic NeRF network into thousands of smaller MLPs, each of which is
responsible for encoding a small part of the scene. By doing this, the number
of floating point operations required to compute each sample along the ray is
considerably reduced. Despite this seemingly simple modification to the original
method, the implementation of Reiser et al.’s method requires batching of matrix
multiplications on the GPU to achieve the desired performance. For this purpose
the authors rely on third-party libraries (i.e. MAGMA) to dynamically load
matrices during inference time in an efficient manner. As a consequence of this,
their implementation is dependent on Nvidia’s CUDA ecosystem.

It is difficult to draw a direct comparison between each of these methods
since there’s often a trade-off to be made between image quality, render time,
and memory usage. Some authors even provide results for multiple variants of
their method, each parameterized to prioritize a different performance charac-
teristic. Furthermore, while some authors provide exact measurements for these
properties, others only offer rough estimates (this is particularly true for mem-
ory/storage requirements). Keeping these caveats in mind, readers may refer
to Table 1 for a summary of the memory/storage requirements of each method
described.

Method Memory (MB) ↓ File Size (MB) ↓
FastNeRF 340–16,200∗ —
KiloNeRF <100 —
PlenOctrees 300–1,900 —
SNeRG 6,900 30–6,900 MB

Table 1: Comparison of memory/storage requirements. When multi-
ple variants of the same method exist, the range of reported values is pre-
sented. Since an exact value was not provided for the size of FastNeRF’s largest
cache (10243), an optimistic approximation was used instead (∗). Hedman et
al. (SNeRG) provide a range of possible storage requirements for their cache
depending on the file format used for compression (PNG, JPEG, or H.264).
Separate values for memory/storage requirements were not provided for any of
the other methods.

Similarly, Table 2 compares the performance characteristics of the different
methods in terms of render throughput in frames per second (FPS). Timings
for each are reproduced as reported by their respective authors (modulo unit
conversions). Since the hardware used to obtain these benchmarks was not uni-
form, performance benchmarks for the vanilla NeRF model were also included
for reference.

3



FPS ↑
Method GPU Baseline Method Speedup ↑
FastNeRF RTX 3090 0.06∗ 172.4 2873
KiloNeRF GTX 1080Ti 0.018 38.46 2137
PlenOctrees Tesla V100 0.023 167.68 7290
SNeRG MacBook Pro 0.03 84.06 2802

Table 2: Rendering performance benchmarks. Column “baseline” repre-
sents the frame rate for the vanilla NeRF model using the same hardware. Re-
sults measured using the NeRF synthetic dataset [9] at a resolution of 800×800
(with the exception of FastNeRF’s baseline, which was measured using only the
LEGO scene).

3 Method
In this section we describe our method for extending an existing, rasterization-
based rendering pipeline to render NeRF scenes. We developed this method
based on the needs of our specific implementation, but we describe the tech-
niques used in general terms whenever possible.

In particular our rendering strategy was designed around Unity’s forward
rendering pipeline, but the techniques presented here should be general enough
to be adaptable to the pipelines of other real-time rendering engines. Since
engines like this are primarily designed for working with 3D meshes, we based
our method on using these primitives to represent NeRF assets within a scene.

3.1 Dataset
We source our data from [18], the dataset released by Yu et al. along with their
paper. This dataset contains the NeRF-SH models used in the paper (which
were trained using NeRF’s LLFF/synthetic dataset [9]) and their corresponding
PlenOctrees.

Yu et al. store their PlenOctrees data using a custom N3-tree structure (see
Appendix A), for which they provide a Python interface. This interface is imple-
mented as a PyTorch CUDA extension and distributed through GitHub. They
serialize this structure to disk using the .npz format – a custom binary serial-
ization format implemented by the NumPy package. A single .npz file consists
of multiple .npy files (each representing a single NumPy array) compressed to-
gether as a ZIP archive. Since the NumPy library only provides official bindings
for Python, the serialization/deserialization of this data from other languages
can be quite cumbersome.

We chose to convert this data into a simpler SVO representation (Section 3.2)
and serialize it using a more portable format (Section 3.3) so it may be easier to
work with in other environments. Because we ran into hardware compatibility
issues when trying to use their Python package (as it relies on specific versions

4

https://github.com/sxyu/svox


of Nvidia’s CUDA driver), we instead use a stripped-down fork of their N3-tree
implementation during the conversion process.

3.2 The Sparse Voxel Octree Structure
In this section we describe the sparse voxel octree (SVO) structure we use to
store and query PlenOctree data. This data structure acts as a bridge between
our Python scripts, the Unity .NET runtime, and shaders on the GPU; as
such, implementations were developed for Python, C#, and HLSL (with varying
degrees of functionality).

Our octrees are parameterized with a fixed resolution (W,H,D) upon ini-
tialization. Voxels are indexed using integer triplets (x, y, z) where 0 ≤ x < W ,
0 ≤ y < H, and 0 ≤ z < D. We adopt the convention of a right-handed XYZ
coordinate system. This is unlike Unity’s native coordinate system which is left-
handed, therefore care must be taken to consistently convert between coordinate
systems when working within the engine (particularly in shader code).

Octants are sorted in colexicographic order with (−,−,−) being considered
the first octant. This is is equivalent to the memory layout of a C multidi-
mensional array of the form A[2][2][2] when indexed using the expression
A[z > 0][y > 0][x > 0]. This scheme results in the following octant indices:

x y z Index

− − − 0
+ − − 1
− + − 2
+ + − 3

x y z Index

− − + 4
+ − + 5
− + + 6
+ + + 7

Octree traversal always starts from the root of the structure, moving down
the leaves. This method has been performant enough to render the scenes tested
in real time, though there are likely more efficient traversal algorithms given the
predictable access patterns of the ray marching algorithm (in particular, it might
be possible to take advantage of the fact that samples are highly correlated since
they’re taken along a ray).

Voxels are sampled using the nearest-neighbor method, though we plan on
implementing bilinear and trilinear interpolation in the future. As of now it is
unclear if the quality benefits of using these more expensive sampling methods
are worth their additional runtime cost.

3.3 Serialization
Our main objective when developing this structure was to have good compatibil-
ity across different platforms. Ideally, creating new implementations for different
languages/systems should be as straightforward as possible. To this end, our
serialization format should be well supported in many different environments.
After comparing a selection of different serialization protocols (see Appendix B)
we landed on Protocol Buffers as the most appropriate format for serializing

5



class SparseVoxelOctree<T>
{

public readonly int Width;
public readonly int Height;
public readonly int Depth;

private List<int> _nodeChildren;
private List<T> _nodeData;

// ...
}

Listing 1: SVO structure in C#. Implemented as a generic class. The
structure of the octree is encoded as a list of 8n integers (_nodeChildren).
Within this list, nodes are represented as blocks of 8 integers containing the
indices of their children. A second list (_nodeData) with n entries of generic
type T stores the data for each node.

struct SparseVoxelOctree {
int width;
int height;
int depth;
int dataDim;
int maxLevel;
StructuredBuffer<int> nodeChildren;
StructuredBuffer<float> nodeData;

};

Listing 2: SVO structure in HLSL. Follows the same memory layout de-
scribed in Listing 1. Unlike the C# implementation, it is specialized for floating
point numbers. Each node stores a fixed number (dataDim) of floats represent-
ing the SH coefficients for that voxel.

6



this data structure. As a binary serialization format, it relies on a specification
(in the form of a .proto file) written in a custom schema description language
to parse the contents of the data structure. Listing 3 shows the specification
used for our data structure.

syntax = "proto3";
package svo.protobuf;
option csharp_namespace = "SVO.Protobuf";

message SparseVoxelOctree {
string type_url = 1;
int32 width = 2;
int32 height = 3;
int32 depth = 4;
repeated int32 node_children = 5 [packed=true];
bytes node_data = 6;

}

Listing 3: SVO structure schema (.proto file). To support arbitrary data
types, we store voxel data in binary form as a bytes array. The type_url field
is an URL pointing to a separate .proto file describing the data stored per
voxel. Because Protobuf assigns fixed URLs to basic types it considers “well-
known” (e.g. booleans, integers, floats, etc.), a separate .proto is not necessary
for those types.

3.4 Rendering Strategy
Like most real-time 3D rendering engines, Unity’s rendering pipeline is based
on rasterization using the Z-buffer algorithm. This is because, even with recent
advancements in hardware accelerated ray-tracing, out-of-order rendering still
provides the best performance out of modern GPU architectures. Because of
this we represent our NeRF assets using 3D meshes (e.g. a box, sphere, etc.)
which act as a convex hull around the contents of the NeRF.

Each of these meshes implicitly defines a volume. We render these volumes
using a custom ray-marching algorithm implemented using programmable pixel
shaders. First, the SVO representing the NeRF scene is loaded into GPU mem-
ory; We then render the NeRF’s hull to determine which parts of the image are
occupied by the NeRF: For every camera ray intersecting the NeRF’s volume
(i.e. for every pixel not culled during the last step), we perform ray-marching by
sampling the SVO along the ray using custom vertex and fragment shaders; Fi-
nally, the resulting color, transmittance, and depth values are used to generate
the final image.

7



Our method uses a mixture of transmittance and depth to composite NeRF
volumes with the rest of the 3D scene. During the ray-marching procedure,
we estimate the depth of each ray by computing the expected ray termination
distance E[d] and use this value (along with the Z-buffer) to discard fragments
that would otherwise be occluded by the environment. We then use the ray’s
total transmittance value to add it’s contribution to the framebuffer using alpha
blending.

4 Results and Conclusion
Our method is capable of rendering NeRFs in real time as part of complex
scenes along with more traditional, mesh-based 3D assets. As Table 3 shows,
our method achieves performance that is comparable to state of the art methods
while using consumer grade hardware. We do this using widely available hard-
ware acceleration functionality (without relying on vendor-specific features) by
basing our method on portable, well-established rendering techniques. We hope
this is a step in making NeRFs more accessible to a larger audience by enabling
their adoption in contexts where this was previously not practical.

Figure 1 shows the qualitative results of our proof-of-concept implementation
of this method using the Unity engine for a selection of sample scenes. The
figure showcases some the advantages offered by the hybrid approach used by
the method: Notice, for example, how NeRF objects interact with the rest of
the scene by casting shadows over the environment despite the fact that these
elements use different rendering strategies (rasterization vs. ray-marching).

Scene Cache Size FPS ↑
Chair 1283 317.9

LEGO 1283 205.0
2563 153.5

Hot dog 1283 204.5
2563 156.3

Microphone 1283 280.0
2563 214.9

Table 3: Method performance benchmarks. Results measured using the
Unity Editor’s preview mode at a resolution of 800 × 800. Some variance is
expected depending on the virtual camera’s angle relative to the NeRF scene.
Performance is also roughly proportional to the amount of screen space covered
by the NeRF’s bounding volume. Hardware used: Ryzen 5 5600 (CPU), RX
6700 XT (GPU).

8



(a) (b) (c)

Figure 1: Qualitative results of our method for the LEGO (a), hot dog (b),
and microphone (c) scenes using a cache size of 2563. Background environments
for each example were built using textured 3D meshes.

5 Future Work

5.1 Memory Layout of the SVO Structure
Currently our implementation stores the list of child indices for every single
node in the octree. This is unnecessary, however, since we know that the nodes
at the last level of the octree can’t possibly have any descendants. Not storing
these nodes could save a significant amount of space since in practice the over-
whelming majority of nodes in the octree are leaf nodes. This would require a
pre-processing step to sort the nodes of the octree based on their depth in the
graph. As a bonus, performing this transformation should make the nodes of
each layer contiguous in memory, which could improve performance since this
layout would have better data locality. This layout would also simplify memory
management for level-of-detail since reducing LOD level would require simply
trimming off the last few entries in the nodes list.

Also, as of now our implementation stores PlenOctree data using the same
layout as the original N3Tree data structure. This means that, for example,
when using the SH16 format each voxel contains an array of 49 floating-point
values corresponding to the 16 SH coefficients for each color channel (plus the
density). The particular order for these coefficients within the array is deter-
mined entirely by convention. This is unfortunate since it requires developers
to be familiar the layout of these coefficients when using the data structure.
However, since our implementation is generic on type, we have the capability of
storing SH coefficients using a custom data structure – which could make the
sampling process considerably less error-prone than it currently is. Although
our serialization format of choice makes storing and loading custom data types
a bit of a hassle, tweaking it to support this wouldn’t be too difficult (more
information in Section 3.3).

9



5.2 Alternative Rendering Strategies
While our current rendering strategy produces accurate results in most situ-
ations, it can nevertheless be inaccurate in some edge cases. Since color and
transmittance are computed by ray-marching across the entire volume, this can
result in physically incorrect results when the volume is occupied by other ob-
jects (such as opaque meshes).

This issue could be avoided by rendering NeRFs during the transparency
queue of the render pipeline (i.e. after all opaque geometry). In this case, the
Z-buffer could be used to determine how far a ray can travel before intersecting
with the environment. This step would ensure we compute more physically
accurate color and transmittance values. As before, the resulting color would
be computed by adding the ray’s contribution to the final image using alpha
blending.

This strategy, however, suffers from some of the limitations inherent to the
rasterization of transparent objects using alpha blending, such as the need to
sort primitives based on distance to the camera and inaccuracies when rendering
intersecting primitives.

For NeRF assets representing opaque (or nearly opaque) objects, it might
be possible to skirt these limitations without much visual impact by avoiding
the alpha-blending step altogether. This could be done by discarding fragments
based on a transmittance threshold set by the user: rays that that have a trans-
mittance value below the threshold are considered fully opaque, while rays that
have a transmittance above that are considered fully transparent. This avoids
the requirement to render NeRF primitives during the transparency queue, al-
lowing them to be rendered along with opaque geometry (in practice, this ma-
terial would be rendered during Unity’s “transparent cutout” queue).

10



References
[1] Mark Boss et al. NeRD: Neural Reflectance Decomposition from Image

Collections. 2021. arXiv: 2012.03918 [cs.CV].

[2] c80k and contributors. c80k/capnproto-dotnetcore: A Cap’n Proto imple-
mentation for .NET Standard and .NET Core. url: https://github.
com/c80k/capnproto-dotnetcore (visited on 10/25/2023).

[3] Kangle Deng et al. Depth-supervised NeRF: Fewer Views and Faster Train-
ing for Free. 2022. arXiv: 2107.02791 [cs.CV].

[4] Yilun Du et al. Neural Radiance Flow for 4D View Synthesis and Video
Processing. 2021. arXiv: 2012.09790 [cs.CV].

[5] Stephan J. Garbin et al. FastNeRF: High-Fidelity Neural Rendering at
200FPS. 2021. arXiv: 2103.10380 [cs.CV].

[6] Michelle Guo et al. “Object-Centric Neural Scene Rendering”. In: arXiv
preprint arXiv:2012.08503 (2020).

[7] Peter Hedman et al. Baking Neural Radiance Fields for Real-Time View
Synthesis. 2021. arXiv: 2103.14645 [cs.CV].

[8] Zhengqi Li et al. Neural Scene Flow Fields for Space-Time View Synthesis
of Dynamic Scenes. 2021. arXiv: 2011.13084 [cs.CV].

[9] Ben Mildenhall et al. NeRF synthetic Blender data and LLFF scenes
(Google Drive). url: https://drive.google.com/drive/folders/
128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1 (visited on 01/02/2024).

[10] Ben Mildenhall et al. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. 2020. arXiv: 2003.08934 [cs.CV].

[11] Atsuhiro Noguchi et al. Neural Articulated Radiance Field. 2021. arXiv:
2104.03110 [cs.CV].

[12] Jason Paryani and Jacob Alexander. pycapnp — capnp 1.0.0 documenta-
tion. url: https://capnproto.github.io/pycapnp (visited on 10/25/2023).

[13] Albert Pumarola et al. “D-NeRF: Neural Radiance Fields for Dynamic
Scenes”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 2021.

[14] Christian Reiser et al. KiloNeRF: Speeding up Neural Radiance Fields with
Thousands of Tiny MLPs. 2021. arXiv: 2103.13744 [cs.CV].

[15] Pratul P. Srinivasan et al. NeRV: Neural Reflectance and Visibility Fields
for Relighting and View Synthesis. 2020. arXiv: 2012.03927 [cs.CV].

[16] Wenqi Xian et al. Space-time Neural Irradiance Fields for Free-Viewpoint
Video. 2021. arXiv: 2011.12950 [cs.CV].

[17] Alex Yu et al. PlenOctrees for Real-time Rendering of Neural Radiance
Fields. 2021. arXiv: 2103.14024 [cs.CV].

11

https://arxiv.org/abs/2012.03918
https://github.com/c80k/capnproto-dotnetcore
https://github.com/c80k/capnproto-dotnetcore
https://arxiv.org/abs/2107.02791
https://arxiv.org/abs/2012.09790
https://arxiv.org/abs/2103.10380
https://arxiv.org/abs/2103.14645
https://arxiv.org/abs/2011.13084
https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2104.03110
https://capnproto.github.io/pycapnp
https://arxiv.org/abs/2103.13744
https://arxiv.org/abs/2012.03927
https://arxiv.org/abs/2011.12950
https://arxiv.org/abs/2103.14024


[18] Alex Yu et al. Trained NeRF-SH models and converted plenoctrees (Google
Drive). url: https://drive.google.com/drive/folders/1J0lRiDn_
wOiLVpCraf6jM7vvCwDr9Dmx (visited on 10/25/2023).

[19] Kai Zhang et al. NeRF++: Analyzing and Improving Neural Radiance
Fields. 2020. arXiv: 2010.07492 [cs.CV].

12

https://drive.google.com/drive/folders/1J0lRiDn_wOiLVpCraf6jM7vvCwDr9Dmx
https://drive.google.com/drive/folders/1J0lRiDn_wOiLVpCraf6jM7vvCwDr9Dmx
https://arxiv.org/abs/2010.07492


A The N 3-Tree Structure
An N3-tree is a spatial partitioning data structure similar to a sparse voxel
octree. N3-trees are parameterized with an integer N which determines the
number of subdivisions (per dimension) at every level of the tree. In other words,
each internal node in an N3-tree contains at most N3 children (as opposed to
8 in an octree). When N = 2 the two structures are functionally equivalent.

Yu et al.’s version of the N3-tree (simply called an N3Tree) is implemented
as a PyTorch extension and supports hardware acceleration using CUDA. The
authors use PyTorch for the fine tuning step of their method, where they further
optimize each PlenOctree using differentiable rendering. They wrote a custom
CUDA kernel which performs queries in batches on the GPU; This kernel imple-
ments a straightforward traversal strategy by always searching the tree from the
root down. Sampling uses the nearest-neighbor method (i.e. no interpolation is
performed between neighboring voxels).

In this implementation, N3-trees are also parameterized with an integer
(depth_limit) which bounds the size of its internal graph structure. This value
effectively limits the maximum resolution achievable within the structure. All
voxels are considered to be located inside the unit cube, with samples being in-
dexed using floating-point coordinates (x, y, z) (where x, y, z ∈ [0, 1]). Although
the structure doesn’t enforce a particular coordinate scheme, the scenes from
[18] all use a right-handed XYZ coordinate system.

The structure is primarily designed to store floating-point data in the form of
vectors. To this end, it is parameterized with an integer data_dim determining
how many floating-point values are stored at each node. Internally, the structure
mostly consists of two NumPy tensors: self.child and self.data. The first
tensor (self.child) has a dimension of (m,N,N,N) where m denotes the
number of nodes in the octree. It is used to represent the tree’s structure: For
each node i, self.child[i] contains a (N,N,N)-tensor with the indices of each
of its children. The second tensor (self.data) has a dimension of (m,N,N,N,
data_dim ) and is used to store the data pertaining to each node. In both cases
octants within a node are indexed in lexicographical order (as in the Python
expression self.child[i,x,y,z]).

Note that the structure stores data per node, not per voxel. This means it
is capable of storing data not only in the leaves, but also in the intermediate
nodes. Though the authors don’t seem to take advantage of this feature in their
rendering algorithm, it could be used for implementing level-of-detail and/or
mipmapping.

Each voxel stores a data_dim-dimensional vector of floating-point values.
Since no particular layout is enforced for these values, care must be taken to
establish a consistent order when reading/writing to these vectors. When storing
NeRF-SH data, spherical harmonic coefficients are grouped by color. Within
each color coefficients are sorted by spherical harmonic order, then by degree.
This results in the following sequence of coefficients:

f0
0 , f

−1
1 , f0

1 , f
1
1 , f

−2
2 , f−1

2 , f0
2 , f

1
2 , f

2
2 , . . .

13



Where fk
ℓ is the coefficient corresponding to the spherical harmonic Y k

ℓ of
order ℓ and degree k. The vector’s last value always represents the density σ.

B Comparison of Data-Serialization Formats
JSON: Easily the most popular and widely supported serialization format
analysed. It has been designed to resemble JavaScript syntax, making it human-
readable and somewhat intuitive (at least to those with some programming
experience). Unfortunately, this makes it very inefficient in terms of storage
and encoding/decoding performance.

BSON: A binary interchange format based on JSON designed to be more
efficient in terms of both storage and encoding/decoding performance (particu-
larly scan speed). However, our experiments show that BSON files have an even
larger storage footprint than JSON when used for storing our SVO structure.

Binary Formatter: The C# standard library features its own binary serial-
ization format called BinaryFormatter. Although it is widely supported within
the .NET ecosystem, it is not cross-platform and thus difficult to work with in
other contexts.

Protocol Buffers: Also known as Protobuf. A binary serialization format
developed by Google. Designed to be efficient, cross-platform, and easy to use.
Unlike JSON, Protobuf is designed for structured data – that means encod-
ing/decoding rely on pre-defined data schemas supplied by the programmer in
the form of .proto files. These files are written in a custom schema specification
language.

Flatbuffers: Yet another binary format for structured data, also developed
by Google. It is meant to address some of the shortcomings of Protobuf in
terms of performance, particularly when working with larger collections of data
or when partial decoding of records is required. Our experiments show that it is
more efficient than Protobuf in terms of storage size, but encoding speed suffers
considerably (however this could be an issue specific to the Python library used;
further experiments might be necessary).

Cap’n Proto: A serialization protocol created by the former maintainer of
the Protocol Buffers library. It was designed to improve on some of Protocol
Buffers’ shortcomings by including, for example, deeper support for generic
and dynamic types. Unofficial community implementations of the protocol are
available for a number of languages; however these implementations tend to be
less mature than those of Protocol Buffers and Flatbuffers due to the fact that
Cap’n Proto has a considerably smaller community.

14



Format Bin
ar
y
En

co
di
ng

Py
th

on
Su

pp
or
t

C#
Su

pp
or
t

Pa
ck
ed

Arr
ay

s

G
en

er
ic

Ty
pe

s

JSON · ✓ ✓ · ✓
BSON ✓ ✓ ✓ · ✓
BinaryFormatter ✓ · ✓ ✓ ✓
Protobuf ✓ ✓ ✓ ✓ ✓1

FlatBuffers ✓ ✓ ✓ ✓ ·
Cap’n Proto ✓ ·2 ·2 ✓ ✓

Table 4: Serialization format features. Note that while the Protobuf speci-
fication defines standardized representations for generic types, the feature is not
well supported across implementations (1). Also, despite the fact that Cap’n
Proto doesn’t provide official implementations for Python or C#, unofficial sup-
port is available to some degree through community-maintained packages (2).

With the exception of C#’s BinaryFormatter, all of the the data serial-
ization formats surveyed are language-agnostic. However, their authors often
only provide official implementations for a small selection of languages. This is
true for Cap’n Proto, which provides no official implementation for Python or
C#. However, unofficial support is available through the community-maintained
packages pycapnproto [12] and capnproto-dotnetcore [2].

Most formats surveyed support the serialization of generic data types to
some degree. In JSON, for example, containers (i.e. lists or dictionaries) may
contain arbitrary data since the format is schema-less. As a consequence of this,
the onus lies on the developer (rather than the library) to validate that the data
received is correct. On the other hand, formats which enforce a fixed schema
must rely on other mechanisms to provide the same functionality.

In the case of Protocol Buffers arbitrary data can be serialized using the Any
type, which tags binary blobs of data using a separate URL field. Unfortunately,
this feature is not well supported across implementations. Additionally, using
Any requires list entries to be individually tagged, defeating the purpose of
packed lists. A workaround for this issue is to represent lists of generic values
using the bytes type and store an URL describing the type as a separate field
of the message. This is what we do in practice, although it is not ideal.

15



Format Encoding Time (s) ↓ File Size (MB) ↓
JSON 35.5 244.8
BSON 18.0 421.0
BinaryFormatter — —
Protobuf 4.4 120.0
FlatBuffers 60.0 96.0
Cap’n Proto 6.8 96.0

Table 5: Serialization format benchmarks. Results measured in Google
Colab using the free-tier Python 3 Google Compute Engine backend. Timings
were taken using the LEGO scene from [18]. This scene was converted from its
original N3Tree representation into our custom SVO format by resampling it at
a resolution of 1283 voxels. Results for the JSON format were measured using
Python’s built-in json package.

16


	tr
	Real_Time_Rendering_of_Neural_Radiance_Fields
	Introduction
	Related Work
	Method
	Dataset
	The Sparse Voxel Octree Structure
	Serialization
	Rendering Strategy

	Results and Conclusion
	Future Work
	Memory Layout of the SVO Structure
	Alternative Rendering Strategies

	The N3-Tree Structure
	Comparison of Data-Serialization Formats


