
Computers & Graphics (2023)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

DirectVoxGO++: Grid-Based Fast Object Reconstruction using Radiance Fields

Daniel Perazzoa,b,∗, João Paulo Limab,c, Luiz Velhoa, Veronica Teichriebb

aIMPA - VISGRAF Laboratory, Rio de Janeiro, Brazil
bCIn/UFPE - Voxar Labs, Recife, Brazil
cDC/UFRPE - Visual Computing Lab, Recife, Brazil

A R T I C L E I N F O

Article history:
Received April 14, 2023

Keywords: Neural Radiance Fields, Ob-
ject Reconstruction, Volume Rendering,
Neural Fields

A B S T R A C T

In recent years, the computer vision and computer graphics communities have seen
the emergence of new classes of models for representing objects based on Neural
Radiance Fields (NeRFs). These techniques use ideas based on traditional methods
from computer graphics, for example, radiance fields, and combine them with implicit
neural representations and neural image-based rendering (IBR). However, one significant
drawback of this class of techniques was that they were too slow, taking in the range of
hours in high-end GPUs. Due to these limitations, new techniques have been created for
the fast reconstruction of scenes, such as Direct Voxel Grid Optimization (DirectVoxGO)
DirectVoxGORev2. Alongside this limitation, initially, NeRFs had limited compositing
and modeling capabilities. For example, a simple task such as separating the background
from the foreground could not be modeled with NeRFs until the emergence of new
techniques such as NeRF++. Our method extends DirectVoxGO to allow the handling
of unbounded scenes inspired by some ideas from NeRF++, adapting it to incorporate
elements from a neural hashing approach employed by other works. Our technique
improved photorealism compared with DirectVoxGO and Plenoxels on a subset of
the Light Field DatasetLF datasetRev1 on average in at least 2%, 8%, and 8% for Peak
Signal-to-Noise Ratio (PSNR)PSNRRev2, Structural Similarity Index Measure (SSIM)
SSIMRev2, and Learned Perceptual Image Patch Similarity (LPIPS)LPIPSRev2 metrics,
respectively, while also being an order of magnitude faster than NeRF++. Also, we
demonstrate that, for the evaluated scenes, our technique has comparable training time
and memory consumption than previous works. Code is available in https://github.

com/danperazzo/dvgoplusplus.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

In the computer graphics community, new graphical represen-2

tations based on neural networks have recently gained adoption.3

Among those, one the most popular is Neural Radiance Fields4

∗Corresponding author:
e-mail: drp@cin.ufpe.br (Daniel Perazzo)

(NeRFs) [1]. These techniques expanded on previous works 5

on radiance and the classic theory of light fields [2], and their 6

emergence caused a significant surge in the number of works 7

published about such themes in a relatively short period [3]. 8

The great breakthrought in this class of techniques were their 9

impressive photorealistic rendering and flexibility for a wide 10

Preprint submitted to Computers & Graphics April 14, 2023

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
https://github.com/danperazzo/dvgoplusplus
https://github.com/danperazzo/dvgoplusplus

2 Preprint Submitted for review /Computers & Graphics (2023)

range of applications, from reconstructing the entire San Diego1

city [4] to human body modeling [5]. However, the original2

NeRF technique is computationally expensive, taking hours to3

run on high-end GPUs [1].4

To counter this problem, other authors developed techniques5

to speed up the optimization process of NeRFs [6]. Some au-6

thors started developing techniques inspired by classical com-7

puter graphics algorithms and aiming to improve the speed of the8

rendering process itself [7, 8]. One direction some authors have9

been exploring is using grid-based NeRFs [9, 10, 11]. While10

DirectVoxGO [11] employed a two-stage optimization scheme11

based on a coarse representation to obtain an estimate of the12

geometry of the object and a fine representation to obtain its13

reconstructionRev4, Plenoxels [9] used spherical harmonics coef-14

ficients instead of a Multilayer Perceptron (MLP)MLPRev2. In15

contrast, Instant-NeRFs [10] used a multi-resolution neural hash-16

ing approach. These methods enable faster rendering times at a17

significantly higher memory footprint cost [12].18

Additionally, the original NeRF only allowed the capture of19

one scene, not being possible to separate, for example, fore-20

ground objects from the background, which would be interesting21

for 3D reconstruction applications [13]. Due to this limitation22

To counter both of these issuesRev3, NeRF++ [13] employed a23

background compositing approach that improved results forRev3
24

360◦ settings and enabledRev3 the ability to separate foreground25

from background.26

In this work, we present a technique that, after receiving a set27

of images and their respective intrinsic and extrinsic parameters,28

obtains a 3D model of the object of interest and background in29

360◦ scenes. In addition, we aim to make our method efficient in30

terms of memory usage and scene optimization time. Differently31

from the original DirectVoxGO [11], we use a formulation that32

enables extracting NeRFs from 360◦ scenes in a reasonable time.33

Additionally, we integrated DirectVoxGO with a state-of-the-art34

multi-resolution hash encoder.35

The contributions of this work are:36

• Define and develop an improvement of DirectVoxGO for37

360◦ scenes and extraction of a 3D model of an object of38

interest (Section 4); 39

• Perform qualitative and quantitative evaluations of our 40

method on widely-used datasets. In our case, we test on 41

the Light Field (LF) [14] dataset and compare it with other 42

works such as the original DirectVoxGO [11] and Plenox- 43

els [9] (Section 5). 44

Compared with our previous work on this subject [15], of 45

which this paper is an extension, this paper presents a more 46

detailed expansion of the background and foundations of our 47

technique in Section 2, with a discussion about light fields, neu- 48

ral networks for IBR and implicit neural representations. We 49

also added Section 3 for reviewing the literature on NeRFs and 50

fast training for NeRFs. Furthermore, we include a more detailed 51

description of our work in Section 4, with explanations about the 52

traditional NeRF pipeline, the pre-processing procedure, and the 53

coarse and fine training of our technique. Finally, we expanded 54

our exploration of the results in Section 5 by adding time and 55

memory measurements for each scene. 56

2. Background and Foundations 57

2.1. Light Fields 58

The light field is a modeling technique representing incom- 59

ing lights as a vector function, similar to how physics models 60

electromagnetic fields. In fact, in the mid-19th century, Michael 61

Faraday was of the first researchers to conjecture that light could 62

be modeled as a field [16]. Later, at the beginning of the 20th 63

century, physics works, such as the ones by Gershun [17], and 64

Moon and Spencer [18], would mathematically model light as 65

a field. Finally, in the late 90s, after the development of digital 66

computers and computer graphics, both Levoy and Hanrahan [2] 67

and Gortler et al. [19] suggested using light-field formulations 68

and the 4D light field for image-based rendering (IBR). Investiga- 69

tions on capturing and manipulating the light field would lead to 70

the development of a multi-camera array for the capture of light 71

fields [20], and even a light-field microscope [21]. However, in 72

this area, one watershed moment was the development of light- 73

field cameras that enabled the easy capture of light fields [22]. 74

These cameras use micro-lens arrays, which enable the camera 75

Preprint Submitted for review /Computers & Graphics (2023) 3

to take photos from multiple views at once and capture the many1

Rev3light rays that enter the camera aperture. Moreover, with2

the acquisition of light fields, it is possible to perform image3

processing (e.g., changing the focus in the photos).4

2.2. Neural Networks for Image-Based Rendering5

IBR is a technique for modeling and rendering that uses im-6

ages instead of geometry as primitives [23]. In the last few years,7

many techniques tried to perform novel view synthesis of scenes8

given a few views using neural networks and representations9

such as multi-plane images (MPIs) [24, 25].10

Although these techniques create impressive novel views11

given a few input images, they sometimes generate artifacts12

originated from the MPI formulation. Due to this, Mildenhall13

et al. [26] developed a new technique for view synthesis using14

ideas from light-field rendering. Even though these techniques15

obtain excellent results and great photorealism, they do not out-16

put geometry like 3D reconstruction techniques.17

2.3. Neural Implicit Representations18

Computer graphics applications often use implicit representa-19

tions, such as Signed Distance Functions (SDFs)SDFsRev2 [27].20

Neural implicit representations use the fundamental idea that a21

neural network can work as the function being evaluated.22

Neural implicit representations use formulations popular in23

computer graphics. Novel techniques, such as Occupancy Net-24

works [28] and DeepSDFs [29], used implicit formulations, re-25

placing the traditional functions used in other implicit represen-26

tations by neural networks. Researchers even studied specific27

neural networks for these tasks, such as SIREN [30]. Later,28

new models of implicit representations were constructed with29

NeRFs [1]. A complete survey is presented by Schirmer et al.30

[31].31

3. Related NeRF-based Techniques32

This section reviews the literature many worksRev3 on NeRFs,33

including the original technique [1], its ramifications and im-34

provements, and, finally, the techniques that tried to speed up35

NeRFs. The techniques explained in this section will serve to36

build our method. As stated previously, we will build up from 37

DirectVoxGO [11], and extend it to 360◦ scenes by employing 38

an inverted sphere parametrization from NeRF++ [13] and the 39

enconding from InstantNeRFs [10]Rev3
40

3.1. Neural Radiance Fields 41

Generally, many practitioners’ approaches separate physically 42

based rendering (PBR) and IBR in computer graphics. Both of 43

these fields have been around for some time and have been used 44

in various forms. Nowadays, we have seen staggering progress 45

in the IBR domain, from 3D photos based on MPIs [24] to light 46

fields [32]. These developments enabled taking 3D photos from 47

a single shot on many Rev3consumer devices [33]. 48

However, these techniques present limitations, such as rela- 49

tively low photorealism and not much expressivity. They are also 50

not capable of acquiring both geometry and appearance [1]. Due 51

to this, Mildenhall et al. [1] proposed NeRF, an IBR technique 52

that encodes the scene as a MLP and synthesizes novel views us- 53

ing an approach based on volumetric rendering. This approach is 54

similar to previously discussed deep implicit methods. However, 55

the original formulation only allowed for simple shapes. 56

Due to this, the authors encoded a 5D radiance field as an MLP 57

and performed the consequent optimization. The authors base 58

their technique on classic volumetric rendering, which is trivially 59

differentiable, to perform rendering. Thus, the technique enables 60

high-quality view synthesis results using images acquired from 61

a sparse set of camera views. 62

However, NeRF is not without its flaws. Despite the impres- 63

sive quality of the resulting views, it nonetheless has someRev3
64

drawbacks that many Rev3other authors decided to improve. The 65

Some of theRev3 most relevant are the time it takes to optimize 66

a single scene (which can be of the order of days on Nvidia 67

RTX GPUs), the amount of memory it takes, and the speed of 68

rendering a single scene. 69

Due to these limitations regarding training/rendering time and 70

memory consumptionRev3, many Rev3different variations and im- 71

provements on NeRF have been proposed. Here, we only high- 72

light the techniques that seem more in line with our research, 73

which are techniques with fast training for rendering NeRFs 74

4 Preprint Submitted for review /Computers & Graphics (2023)

photo-realistically. Other techniques, such as NeRF++ [13],1

extended the results for 360◦ scenes by employing an inverted2

sphere parametrization. Finally, recently researchers expanded3

on the quality of these results, such as MipNeRF 360 [34]Rev5.4

3.2. Fast Training5

One of the biggest problems of NeRFs, as mentioned previ-6

ously, is their lengthy rendering and training times, which caused7

many techniques to aim at speeding up rendering. First, some of8

these adapted traditional computer graphics techniques such as9

PlenOctrees [7]. Other techniques explored parallelization using10

much smaller NeRFs instead of only one [8]. Other approaches11

for speeding up rendering have been proposed, such as querying12

the ray itself [35] to perform the analytical integration instead of13

computing it by sampling along the ray [36].14

However, other researchers are currently discovering ways to15

speed up the training process. Initially, some researchers tried us-16

ing techniques from meta-learning [37] to give a pre-initialized17

set of weights. They used fairly common meta-learning algo-18

rithms such as Reptile [38].19

Another approach was using Convolutional Neural20

Networks (CNNs)CNNsRev2 to extract features from the images.21

This way, the technique could use image features as prior for22

the MLP. This approach was taken in both PixelNeRF [39] and23

MVSNeRF [40].24

Moreover, instead of using meta-learning or convolutional25

features to speed-up training, recent approaches aim to shift the26

inference function to a faster training procedure. For example,27

both DirectVoxGO [11] and Plenoxels [9] use a voxel-based28

method instead of a pure MLP that has been traditionally associ-29

ated with NeRFs. Their approach assured similar results to the30

original NeRF technique with training times on the scale of min-31

utes instead of hours. In another similar approach, TensoRF [12]32

applies tensorial decomposition to leverage a speed-up, with33

also a decrease in the memory footprint compared to previous34

methods.35

Recently, neural-hashing-based techniques [10] have managed36

to do a speed-up that made them take seconds in settings where37

the original NeRF took hours. On a negative note, this new38

technique presents very high memory requirements. Finally, as 39

a footnote, there has also been some Rev3research in creating a 40

specialized system-on-a-chip (SoC) core for NeRFs, such as the 41

ICARUS architecture [41]. 42

4. DirectVoxGO++ 43

In this section we detail our technique along with presenting 44

a brief overview of the traditional NeRF pipeline. 45

4.1. Traditional NeRF Volume Rendering Pipeline 46

The key idea of NeRF [1] is that it models the scene as a radi- 47

ance and opacity field and renders it using volume renderingRev3. 48

To do this, the authors use a multi-layer perceptron we define 49

asRev3 MLP that receives as input the position of a point p ∈ R3
50

and a unit view direction vector d ∈ R3 and outputs both a color 51

c = (R,G, B) and a density σ ∈ R. The authors then used volume 52

rendering to compute the color of the pixelsimage valuesRev3. 53

Formalizing, if we want to render a view, by volume 54

rendering, for each ray r, corresponding to a pixel in the image, 55

we want to estimate its color C(r)Rev3. To obtain the rays, we 56

can use the given camera parameters and estimate the origin o 57

and direction d of each ray r(.). With this, any point in the ray 58

can be parametrized by r(t) = o + td with t ∈ R. To limit the 59

number of samples in the ray, the authors of NeRF used bounds 60

based on the points obtained with COLMAP [42]COLMAPRev5. 61

Using the ray parameterization r(.), we canRev3 sample a num- 62

ber N of points pi from the ray and, using the classic volume 63

rendering equation [43], we can estimate the color C(r)Rev3 for 64

the ray r(.)Rev3. 65

For each sampled point pi, and using the unit viewing direc- 66

tion vector d, we compute c and σ by 67

σi, ci =MLP(PE(pi),PE(d)), (1) 68

where PE(.) is the positional encoding operationRev3, a technique 69

introduced in their paper that aims to stimulate the MLP to learn 70

high-frequency features [1]. 71

Following the volume rendering approach, given a step size of 72

the ray δi ∈ R, we compute an αi value, which is the probability 73

Preprint Submitted for review /Computers & Graphics (2023) 5

Fig. 1. Pipeline of DirectVoxGO++. In the first step, we cast rays into the scene and sample points in the background and the foreground. Next, we compute
color and densities for each setting and combine both in an integration. Finally, since each step is differentiable, we use the predicted RGB values, compare
them to the ground truth, and optimize the model accordingly.

that the ray will terminate at this point after traversing the δi1

stepRev5. This αi is computed by:2

αi = alpha(σi, δi) = 1 − exp (σiδi). (2)3

Next, we compute opacity weights Ti for each i ∈ [0,N + 1]:4

Ti =

j=i−1∏
j=1

(1 − α j). (3)5

Now, with the color value ci for each of the N sampled points6

in the ray, we can then obtain the color of the object of interest7

in the foreground, Rev2Cfg(r) as follows:8

Cfg(r) =
i=N∑
i=1

Tiαici. (4)9

Finally, we can compose it with a pre-defined background10

color cbg = (R,G, B), where we multiply it by the opacity corre-11

sponding to the background TN+1. Doing so enable us to obtain12

the final C(r):13

C(r) = Cfg(r) + TN+1cbg. (5)14

Although we wrote this equation in discrete form, it is15

only a discretized version of an integral, which makes it16

differentiable.Rev3 Based on this approach, the authors opti-17

mized the MLP using a simple photometric loss for each ray r18

ri
Rev3, comparing it with its pixel color Cpix(r)the corresponding19

observed pixel color corresponding to that ray Cpix(r)Rev3 while20

iterating in the set of all rays R:21

Lphoto =
1
||R||

∑
r∈R

||Cpix(r) − C(r))||2. (6)22

Then, we can optimize the neural network parameters using a23

gradient-descent-based approach.24

4.2. Overview of DirectVoxGOour MethodRev3
25

As mentioned in the introduction, we used DirectVoxGO [11] 26

as a foundation.We recomend reading their original paper for 27

more details.Rev3 Differently from Sun et al. [11], we com- 28

pute background and foreground colors separately and com- 29

pose both using Equation 5. To compute the background and 30

foreground colors, we performed the classic volume render- 31

ing approach in NeRF [44]. In this section we will review the 32

pipeline of DirectVoxGO, which will be similar to the pipeline 33

of our technique, and in the next sections we will indicate the 34

additions and changes we made to the original method.Rev3
35

In the DirectVoxGO pipelineour techniqueRev3, we use a 36

voxel grid coupled with a two-stage training procedure that 37

aims to find a coarse model for the basic geometry of the scene. 38

This coarse model allows for a tighter bounding box and skips 39

free space during the fine-training stage. We perform a trilinear 40

interpolation to extract the color and density information from a 41

point given a grid. 42

The coarse training step only uses coarse color and density 43

grids to find an estimate for the object’s geometry and, given 44

the values of the voxels, uses trilinear interpolation to obtain 45

the density and color for the points.The coarse training step only 46

uses coarse color and density grids to find a coarse geometry of 47

the scene and only a trilinear interpolation to find the color and 48

density valuesRev3 This step is much faster than the next fine 49

training step. After this step, the fine training step uses this 50

coarse geometry to train with much higher resolution grids and 51

an MLP on a tighter bounding box, thereby skipping free space. 52

6 Preprint Submitted for review /Computers & Graphics (2023)

After this step, the fine training step use this coarse geometry1

to train with much higher resolution grids and an MLP on a2

tighter bounding box, thereby skipping free spaceRev3 We use3

the photometric loss, background entropy loss, and point loss4

regularizer introduced in DirectVoxGO [11]Rev3 to perform the5

training. In Figure 1, we can see a pipeline for the rendering6

in our method. In the first stage, we sample from points in the7

background and foreground. These points will go through an8

encoding stage, where the features extracted will be used to9

estimate the color and density values for the points. Finally, we10

use the rendering equation [44] to extract the color value of a11

pixel.12

For the optimization procedure, we compose a final loss Ltotal13

using three partial losses: a photometric loss Lphoto, a per-point14

regularization Lpoint and a background entropy regularization15

Lbg.16

The photometric loss Lphoto is the one used by the original17

NeRF, as shown in Equation 6. The per-point regularization18

Lpoint can be written as:19

Lpoint =
1
|R|

∑
r∈R

i=N∑
i=1

Tiαi||ci − C(r)||2. (7)20

The background entropy regularization Lbg, which aims to21

create a balance between the background and the foreground, is22

defined as:23

Lbg = −TN+1 log(TN+1) − (1 − TN+1) log(1 − TN+1). (8)24

The final loss Ltotal is defined by using the hyperparameter25

weights wphoto, wpoint and wbg for each partial loss:26

Ltotal = wphoto · Lphoto + wbg · Lbg + wpoint · Lpoint. (9)27

For the optimization, we use the Adam optimizer [45]Adam28

optimizerRev2.29

4.3. Preprocessing30

Before we begin, we must detail our preprocessing steps be-31

fore DirectVoxGO++ starts. Given a set of Nimages RGB images32

I, we first pass this set to the COLMAP [42] camera calibration33

pipeline for obtaining the intrinsic matrix K ∈ R3×3 and the34

Nimages extrinsic matrices. The extrinsic matrices encode the35

camera’s position and orientation in 3D space. We can represent 36

a extrinsic matrix M ∈ R3×4 as M = [R|t], where R ∈ R3×3 is a 37

rotation matrix and t ∈ R3×1 is a translation vector. 38

Additionally, as in the original NeRF [1], we also ex- 39

tract bounds as to where the scene is localized. No other 40

COLMAP [42] results are used in the remaining pipeline. 41

However, following the steps of NeRF++ [13], we need to 42

ensure that the mean of the camera centers is at the origin of the 43

camera coordinate system. Additionally, these camera centers 44

are bounded by a unit sphere centered at the origin of the coor- 45

dinate system. By this, given a set T of all vectors tRev2 which 46

represent the camera centers, we compute the mean center using 47

the tmeancmean
Rev2 function defined by: 48

tmean =
1
|T|

∑
t∈T

t. (10) 49

With this, we can get a new set of camera centers by translat- 50

ing all points in T by this mean center, ensuring that the origin 51

of the coordinate system o is the new mean of the centers and 52

getting the new set T′ by 53

T′ = {t − tmean | t ∈ T}. (11) 54

We can now discover the point distance dmax which is farthest 55

from the origin by computing: 56

dmax = max
t∈T′
||t − o||. (12) 57

Now we scale these points by dmax to ensure that they are 58

bounded by the unit sphere centered at the origin o and obtain 59

the final set of translation vectors T′′ doing 60

T′′ = {
t

dmax
| t ∈ T′}. (13) 61

After performing this processing, we ensure that we can do 62

the background sampling proposed in NeRF++. 63

4.4. Coarse Training 64

This stage was adapted from the original DirectVoxGO, and 65

itThis stageRev3 aims to find a coarse density grid prior. Given 66

as input initial hyperparameter grid dimensions (N(c)
x ,N

(c)
y ,N

(c)
z), 67

where (c) stands for coarse,Rev2 we can then use these grids 68

to perform optimization. For this, we optimize two grids, an 69

Preprint Submitted for review /Computers & Graphics (2023) 7

RGB grid V(c)
RGB ∈ V3×N(c)

x ×N(c)
y ×N(c)

z and a density grid V(c)
density ∈1

V1×N(c)
x ×N(c)

y ×N(c)
z , where the aim is to find a prior V(c)

density that2

represents the coarse geometry of the scene.3

To use the grids, we use a trilinear interpolation operation,4

which we define as interp(., .), where, given as input a point5

pi ∈ R
3 and a grid with an arbitrary number of channels C and6

dimensions (H,W,D), the interp(., .) operation has the following7

mapping:8

interp : R3 × VC×H×W×D −→ RC . (14)9

The voxel grids are initialized with zeros and optimized during10

training. Following a scheme similar to the original NeRF, with11

known camera parameters, we can compute for each pixel the12

ray r(.) that passes through it and, with this, we sample N points13

pi in the ray and then perform volume rendering to find the color14

of the ray. To perform this, we need to find the RGB color and15

density ci ∈ R
3, σi ∈ R for these N points in the ray.16

In the coarse training stage, we can find the RGB color ci for17

each point pi and each grid V3×N(c)
x ×N(c)

y ×N(c)
z by computing18

ci = interp(pi,V(c)
RGB). (15)19

For the density σi we use a similar procedure:20

σi = softplus(interp(pi,V(c)
density) + b), (16)21

where b is a hyperparameter bias term.22

To find the probability of termination at point pi after23

traversing the δi stepRev5, we just compute αi = alpha(σi),24

where alpha(.) is the function defined in Equation 2. The25

stepsize δi, a hyperparameter, is ommited for brevity. Also,26

the softplus(.) function is an activation function defined as:27

softplus(x) = ln (1 + exp (x)) [46].28

4.5. Encoding29

Inspired by Müller et al. [10], we use a similar encoding tech-30

nique as was proposed in their work. For the unitary direction31

vector d, we use a spherical harmonics encoding SE(.) instead32

of the positional encoding PE(.) used by DirectVoxGO. The33

spherical harmonics encoding has a long history in the computer34

graphics field, and spherical harmonics coefficients are used to35

model lightning effects, for example [47]. Spherical harmonics 36

can be seen as akin to Fourier transforms on spherical coordi- 37

nates where, after we choose a degree, we compute the related 38

coefficients as an encoding. In our case, we use a nested spheri- 39

cal harmonics setup with the degree at most 4, with the degree 40

being a hyperparameter that can be tuned. 41

For the vectors that are not unitary, we use the neural hashing 42

encoder NHE(.) proposed by Müller et al. [10]. Similarly to 43

DirectVoxGO [11] and Plenoxels [9], we define a grid of vertices 44

with values that are trilinearly interpolated. However, differently 45

from these methods, we perform a L-levels multiresolution sam- 46

pling in our encoding. In addition, we geometrically scale the 47

resolution in which we sample the grid. The result in each level 48

is concatenated to form the final output feature. Also, instead of 49

each vertex storing a value, we use a hashing approach. We trans- 50

form the position of each vertex along each coordinate (x, y, z) 51

into a different number along each dimension. We then use a 52

spatial hashing function introduced by Teschner et al. [48]: 53

hash(x, y, z) = x · π1 ⊕ y · π2 ⊕ z · π3 mod T, (17) 54

where π1, π2, π3 are large primes and T is the size of the hash 55

table. The authors demonstrated the efficiency of their method, 56

and due to this we replaced the traditional positional encoding 57

PE(.) by the neural hashing encoding NHE(.). 58

Thus, in the fine-training stage, for every sampled point 59

pi, considering the grid of features V(f)
features, grid of densities 60

V(f)
densities and ray directions d, we can sample the colors using 61

the encoders NHE(.) and SE(.) by performing 62

ci =MLP(interp(pi,V(f)
features),NHE(pi),SE(d)). (18) 63

For the density σi, we use a similar procedure, with b as a 64

hyperparameter and using the softplus(.) activation function: 65

σi = softplus(interp(SE(pi),V(f)
density) + b), (19) 66

4.6. Background Colors 67

As mentioned before, both the original NeRF and Di- 68

rectVoxGO assumed a pre-defined background color cbg. How- 69

ever, this severely limited the original technique and only al- 70

lowed it to be used for bounded scenes. Due to this, we aim to 71

8 Preprint Submitted for review /Computers & Graphics (2023)

extend this formulation to allow the DirectVoxGO technique to1

be used in unbounded scenes. With this aim, it would be ideal2

that the value of cbg is different for each ray r and dependent3

on the viewing parameters. That means that we are going to4

estimate cbg(r) for each ray r(.). To achieve this, we use the5

approach of multi-sphere images (used in NeRF++ [13]).6

We first consider a ray r(t) = o + td, where o is the origin of7

the ray and d is its direction. In this approach, we assume that a8

unit sphere centered at the origin bounds the camera centers and9

that the cameras are pointing towards the object of interest. First,10

we adopted a parameterization where, for each point (x, y, z), we11

have that if it is inside the unit sphere (e.g. ||(x, y, z)|| ≤ 1) then12

we represent it in the usual coordinates. Else, if it is outside13

the sphere we represent the point as (x′, y′, z′, 1
r), where r is the14

distance of the point to the origin and ||(x′, y′, z′)|| = 1. One15

form to see this parameterization is as if (x′, y′, z′) gives us the16

unitary vector associated with the point. In contrast, 1
r provides17

us with the inverse of its distance to the center (or disparity).18

This representation significantly aid us during sampling. An19

illustration is given in Figure 2.20

Fig. 2. Image inspired by NeRF++ [13], we can see that inside the sphere the
coordinate system is unchanged while outside the sphere we normalize the
coordinates (x, y, z) and add the fourth coordinate 1

r where r is the distance
to the origin and B is the unit sphere

Now, to perform the sampling up until the intersection a of21

the ray and the sphere, we use the traditional sampling pipeline22

discussed in previous sections. We use this to compute the23

color of the foreground in Equation 4 just as usual. However, to24

sample the points pbg
i in the background, we use the fact that25

since r ∈ [1,∞) then 1
r ∈ (0, 1]. This allows us to use 1

r as a26

parameter to sample background points based on its values, as27

used in NeRF++ [13].28

To do so, we compute a, the intersection of the ray r(.) and29

the unitary sphere, and b, the midpoint of the chord aligning 30

with the ray. Since both of these points are in the ray, then we 31

have a = o + tad and b = o + tbd. We also define csph as the 32

origin of the coordinate system and the center of the unit sphere. 33

However, we have that ||a − csph|| = ||o + tad − csph|| = 1 and 34

dT (b−csph) = dT (o+ tbd−csph) = 0. We can solve both of these 35

equations to obtain a and b. Next, to obtain a new point pbg
i in 36

the ray r(.) given 1
r , we rotate a around the axis (b − csph) × d 37

by an angle ω = arcsin ||b − csph|| − arcsin ||b − csph|| ·
1
r . This 38

parameterization allows us to sample along with the background 39

points. 40

Finally, as a final step in our parameterization, we convert it 41

to a 3-coordinate system by the transformation T (x, y, z, 1
r) = 42

(x
r ,

y
r ,

z
r). We transform our originally unbounded set of points 43

into a bounded sphere of unitary radius, which allows us to 44

perform linear interpolation and use the previously discussed 45

neural hashing encoding. 46

Since we now have a manner to sample Nbg points pbg
i, we 47

can now compute cbg(r). We use a procedure similar to the 48

main pipeline during the fine training stage for the foreground, 49

where we optimize a network MLPbg, a neural-hash encoder 50

NHEbg and a voxel density grid V(bg)
density ∈ V1×N(bg)

x ×N(bg)
y ×N(bg)

z , 51

with the dimensions of the grid being hyperparameters. Unlike 52

the grid used in the main pipeline, this grid is static, although 53

we acknowledge this could be a direction for further research. 54

Similar to the foreground case, given a point pbg
i, we compute 55

ci by: 56

ci =MLPbg(NHEbg(pbg
i),SE(d)). (20) 57

For the density σi, we use a similar procedure: 58

σi = softplus(interp(pbg
i,G · V

(bg)
density) + b), (21) 59

where b is a bias hyperparameter and G is a gain hyperparameter. 60

To finally compute cbg(r), we use the same traditional volume 61

rendering pipeline we have been operating in the previous sec- 62

tions. 63

Preprint Submitted for review /Computers & Graphics (2023) 9

5. Results1

We implemented our technique using PyTorch [49]2

PytorchRev2 and with DirectVoxGO [11] as a starting point. We3

used the original code for DirectVoxGO and Plenoxels [9] to4

make the evaluation fairer between the techniques. We tested5

the techniques in a Samsung Odyssey Rev3laptop with a CPU6

i7-7700HQ @ 2.80 GHz with 16 Gb RAM and a GPU NVIDIA7

GTX 1060 with 6 Gb. Due to the low memory of our set-up,8

we had to modify the original parameters of the Plenoxels and9

DirectVoxGO technique. Still, we tried to tune the parameters10

to evaluate the methods fairly.11

We tested with four scenes from the LF Dataset [14], with12

a small set of the available images, using the data shared by13

the authors of NeRF++ [13]. The four scenes are all 360◦14

rotations around a single small object. To extract the poses,15

we used the COLMAP technique. The same dataset was used16

to evaluate DirectVoxGO++, DirectVoxGO and Plenoxelsthe17

three techniquesRev5.18

As for the parameters, in our technique, we adopted a bias19

density term of b = 0.163. Regarding the grid size, we used20

303, 000 voxels in the coarse stage and 1253 voxels in the fine21

stage. For sampling, we used a step size of δi = 0.5, and a22

number of samples N = Nbg = 220, both in the background and23

foreground in the fine stage.24

We used the following evaluation metrics:25

• PSNR: Peak signal-to-noise ratio, a standard metric for26

signal processing and compression, which measures the27

amount of noise available in a signal compared with the28

original signal.We can use it for many types of signals.Rev3
29

A higher PSNR, up to infinity, indicates a less noisy image;30

• SSIM: Structural Similarity Index [50], which was devel-31

oped for images and uses perceptual cues, trying to create32

a metric that attempts to measure the similarity of the struc-33

ture of the picture. A higher SSIM indicates, up to one, a34

more similar image;35

• LPIPS: Learned Perceptual Image Patch Similarity [51],36

which uses features extracted from deep neural networks to37

create its similarity metric. In our comparisons, we use a 38

VGG backbone. A small LPIPS, with a minimum of zero, 39

indicates a perceptually similar image in this metric. 40

We chose these metrics because of their use in similar 41

works [13, 9, 11]. We also reported memory and training time 42

metrics. 43

We also report the values for the metrics from NeRF++ [13], 44

extracted from its paper. We only display these values for com- 45

parisons as a gold standard since NeRF++ has a long training 46

time (around 24 hours per scene, using 3 NVIDIA RTX 2080Ti 47

GPUs [13]), making it infeasible in variousmanyRev3 applica- 48

tions. Due to these reasons, we omit it in the memory and time 49

comparisons.Rev4 All images have a resolution of 320 × 180. In 50

the qualitative comparison figures, PNXS stands for Plenoxels, 51

and DVGO stands for DirectVoxGO. 52

5.1. Quantitative Comparison 53

Table 1 reports the mean values for each of the metrics in the 54

four LF Dataset scenes. Our method achieved better results than 55

both Plenoxels and the standard DirectVoxGO. As we discuss in 56

more detail in Section 5.2the qualitative results sectionRev3, we 57

observed that the region inside the object of interest has better 58

quality than the region outside. Our technique also managed to 59

achieve better object segmentation than Plenoxels. 60

To investigate this hypothesis experimentally, we used a seg- 61

mentation mask created from the foreground reconstruction ob- 62

tained by our technique. This approach allowed us to directly 63

compare the techniques regarding the reconstruction of the ob- 64

ject of interest, as shown in Table 2 with the average value in the 65

four LF Dataset scenes for each of the metrics. 66

These tests showed that our technique learned and modeled 67

the object very well in low-memory settings compared to state- 68

of-the-art methods. We obtained better results and a much higher 69

difference between our results and previous techniques. 70

As for memory usage and execution time for training on 71

each scene, the original DirectVoxGO runs in around 20 72

minutes, being faster since it does not need to compute the 73

background and foreground as our technique and Plenoxels 74

need to perform. WeSince both are comparable techniques in 75

10 Preprint Submitted for review /Computers & Graphics (2023)

Technique PSNR(↑) SSIM(↑) LPIPS(↓)
DirectVoxGO [11] 20.461 0.658 0.366

Plenoxels [9] 21.912 0.746 0.292
DirectVoxGO++ (ours) 22.436 0.804 0.266

NeRF++ [13] 24.820 0.885 0.221

Table 1. Comparison with previous methods on LF Dataset, we highlight
the best result in each metric.

Technique PSNR(↑) SSIM(↑) LPIPS(↓)
DirectVoxGO [11] 27.002 0.904 0.102

Plenoxels [9] 28.919 0.932 0.074
DirectVoxGO++ (ours) 33.953 0.980 0.018

Table 2. Comparison with previous methods on LF Dataset with our masks
applied to the objects, we highlight the best result in each metric.

terms of idea, weRev3 provide a time comparison between Di-1

rectVoxGO++, DirectVoxGO and Plenoxels in Table 3. As2

shown in Table 3. for all test scenes, DirectVoxGO++ presented3

slightly higher training times than PlenoxelsThe table shows4

that, in most scenes, Plenoxels and DirectVoxGO++ exhibit5

similar execution timesRev4. We also compared the memory6

usage in Table 4. As expected, DirectVoxGO is faster than both.7

However, it also has the worst results and cannot separate back-8

ground and foreground. The techniques tested used around 5 GB9

of GPU memory during execution. We calibrated the parameters10

to ensure a fair evaluation for each technique.11

5.2. Qualitative Comparison12

In this section, we show a qualitative evaluation of our results.13

For example, in Figure 3, we can see the results obtained for one14

test image from the Africa scene. As can be seen, DirectVoxGO15

did not manage to reconstruct the giraffe very well, with the re-16

sulting image presenting blurry features. Compared with Plenox-17

els, DirectVoxGO++ had a worse background, as can be seen in18

the blue rectangle in Figure 3,worse backgroundRev3 but a sig-19

nificantly higher quality foreground, with a special note to the20

checkered stamp on the table. We observe that the Plenoxels21

technique was better than our technique in the LPIPS metric,22

most probably due to the background. However, our technique23

outperformed Plenoxels in the PSNR and SSIM metrics.24

From what we observed, one of the most challenging scenes25

was the Ship one, as shown in Figure 4. We conjecture that this26

may be due to this scene’s thin structures, such as the mast on27

(a) DVGO: (22.857, 0.768, 0.260) (b) PNXS: (25.656, 0.855, 0.201)

(c) Ours: (26.136, 0.867, 0.209) (d) Ground Truth

Fig. 3. Africa scene, with each result of the techniques and the Ground-
truth. They are with their respective metrics, where: (PSNR↑, SSIM↑,
LPIPS↓). We used 56 images during training and 8 images during testing.
For comparison, the gold standard, NeRF++, has the following values in
this scene: (27.410, 0.923, 0.163).

the ship. As happened in the other scenes, our technique was 28

the one that was more able to represent high-frequency details 29

in the foreground, as can be observed by the flag on the ship. 30

(a) DVGO: (23.345, 0.764, 0.266) (b) PNXS: (25.990, 0.857, 0.206)

(c) Ours: (25.576, 0.872, 0.200) (d) Ground Truth

Fig. 4. Ship scene, with each result of the techniques along with the Ground-
truth. They are with their respective metrics, where: (PSNR↑, SSIM↑,
LPIPS↓). We used 95 images during training and 14 images during testing.
For comparison, the gold standard, NeRF++, has the following values in
this scene: (25.350, 0.867, 0.241).

The worst result we obtained from the four scenes analyzed 31

was the Torch scene, illustrated in Figure 5. This scene is espe- 32

cially challenging for the evaluated techniques due to moving 33

persons in the middle of the photos. This factor is not accounted 34

for in the original NeRF, albeit solved in other works [52]. The 35

fact that it is our worst result may be due to this blurrier back- 36

ground. However, as in previous settings, our work managed to 37

infer higher-frequency details in the object of interest. 38

However, compared with the other techniques, our best result 39

is with the basket scene, illustrated in Figure 6. The other 40

Preprint Submitted for review /Computers & Graphics (2023) 11

Scene DirectVoxGO++ (ours) Plenoxels [9] DirectVoxGO [11]
Africa 31 Min. 29 Min. 21 Min.
Ship 31 Min. 29 Min. 21 Min.
Torch 31 Min. 28 Min. 22 Min.
Basket 32 Min. 28 Min. 20 Min.

Table 3. Training timeTimeRev4 comparison between Plenoxels and DirectVoxGO++ in each of the different scenes.

Scene DirectVoxGO++ (ours) Plenoxels [9] DirectVoxGO [11]
Africa 5954 MiB. 5518 MiB. 5658 MiB.
Ship 5142 MiB. 5520 MiB. 4400 MiB.
Torch 5588 MiB. 5520 MiB. 5710 MiB.
Basket 5704 MiB. 5512 MiB. 3872 MiB.

Table 4. Memory comparison between Plenoxels and DirectVoxGO++ in each of the different scenes.

(a) DVGO: (21.199, 0.681, 0.329) (b) PNXS: (23.285, 0.802, 0.229)

(c) Ours: (23.164, 0.794, 0.242) (d) Ground Truth

Fig. 5. Torch scene, with each result of the techniques along with the Ground-
truth. They are with their respective metrics, where: (PSNR↑, SSIM↑,
LPIPS↓). We used 53 images during training and 8 images during testing.
For comparison, the gold standard, NeRF++, has the following values in
this scene: (24.680, 0.867, 0.226).

methods did not manage to capture the fine detail of the holes in1

the basket. This scene is a failure case for the other techniques,2

with DirectVoxGO presenting a blurry foreground object and3

Plenoxels resulting in a chopped basket.4

As shown in Figure 7, the Plenoxels technique did not manage5

to focus its segmentation on the object. In fact, in many scenes,6

it seems that the Plenoxels foreground grid contains some of7

the content from the background. This fact may account for8

Plenoxels’ lack of details in the foreground since a single grid or9

MLP does not have enough capacity to model the foreground and10

the background, causing the foreground areas to suffer compared11

with our work.12

A similar effect happened in the original DirectVoxGO, and an13

akin issue was shown and addressed in NeRF++ [13]. Since we14

successfully segment the foreground from the background, our15

(a) DVGO: (19.723, 0.635, 0.403) (b) PNXS: (20.540, 0.690, 0.354)

(c) Ours: (21.708, 0.814, 0.290) (d) Ground Truth

Fig. 6. Basket scene, with each result of the techniques along with the
Ground-truth. They are with their respective metrics, where: (PSNR↑,
SSIM↑, LPIPS↓). We used 74 images during training and 11 images during
testing. For comparison, the gold standard, NeRF++, has the following
values in this scene: (21.840, 0.884, 0.254).

foreground model can better model it with more high-frequency 16

details. 17

5.3. Ablation Study 18

This section evaluates the impact of both of our proposals 19

individually. In Table 5, we can observe that the modifications 20

proposed in this work, individually, managed to improve upon 21

the original DirectVoxGO. For a qualitative evaluation, we report 22

the results of one of the scenes in Figure 8. Specifically, we 23

observed qualitatively that the background coloring managed to 24

make the object stay sharp. Meanwhile, the neural hash encoder 25

aided in letting our technique infer more detail from the model. 26

Combining both techniques, we obtained the best results. 27

12 Preprint Submitted for review /Computers & Graphics (2023)

Our technique Plenoxels

(a) Score: (36.643, 0.992, 0.006) (b) Score: (29.956, 0.951, 0.055)

(c) Score: (33.468, 0.983, 0.016) (d) Score: (29.801, 0.957, 0.056)

(e) Score: (31.449, 0.966, 0.033) (f) Score: (26.053, 0.884, 0.116)

(g) Score: (34.253, 0.978, 0.018) (h) Score: (29.865, 0.938, 0.070)

Fig. 7. The foreground captured by our DirectVoxGO++ technique com-
pared with the foreground captured by Plenoxels. Bellow, we report the
score obtained by applying the masks obtained by our technique, as re-
ported in Table 2. We show the scores, where: (PSNR↑, SSIM↑, LPIPS↓).

Technique PSNR(↑) SSIM(↑) LPIPS(↓)
DirectVoxGO 20.461 0.658 0.366

DirectVoxGO+(BG) 21.118 0.727 0.319
DirectVoxGO+(NHE) 21.015 0.722 0.312

DirectVoxGO++ (ours) 22.436 0.804 0.266

Table 5. Ablation study on LF Dataset.

6. Conclusion1

Our results showed that by combining DirectVoxGO [11] with2

background compositing [13] and neural hash encoding [10]3

we could achieve better results and a more accurate object4

reconstruction. Differently from the original DirectVoxGO,5

we enabled object reconstruction in unbounded scenes without6

using any foreground segmentation.Rev2 We also demonstrated7

that it exhibited similar execution time and memory consump-8

tion during training compared to the other evaluated techniques,9

Plenoxels and DirectVoxGO. Although our technique achieved10

good results in the evaluated dataset, we also mapped someRev3
11

(a) DVGO: (22.857, 0.768, 0.260) (b) BG: (23.991, 0.795, 0,272)

(c) NHE: (23.499, 0.813, 0.210) (d) Ours: (26.136, 0.867, 0.209)

Fig. 8. Africa scene, with each result of the ablation study, where DVGO
stands for DirectVoxGO, BG corresponds to only adding the background
coloring, and NHE corresponds to only adding the neural hash encoder.
They are with their respective metrics, where (PSNR↑, SSIM↑, LPIPS↓).
We used 56 images during training and 8 images during testing.

limitations, such as the artifacts in the background for some 12

scenes and the lack of support for dynamic scenes, that could 13

be expanded in future worksRev3. 14

Also, as we have shown with our problems with the Torch 15

scene, a possible direction would be to integrate deformable 16

NeRF [52] ideas into our pipeline and extend it to videos. One 17

field which is getting attention from the community is also 18

editing of NeRFs [53] and integrating it into other graphics 19

systems [54]Rev2
20

Acknowledgment 21

The authors are supported by grants from CNPq (process 22

422728/2021-7) and FAPERJ. 23

References 24

[1] Mildenhall, B, Srinivasan, PP, Tancik, M, Barron, JT, Ramamoorthi, 25

R, Ng, R. Nerf: Representing scenes as neural radiance fields for view 26

synthesis. In: European conference on computer vision. 2020, p. 405–421. 27

[2] Levoy, M, Hanrahan, P. Light field rendering. In: Proceedings of the 28

23rd annual conference on Computer graphics and interactive techniques. 29

1996, p. 31–42. 30

[3] Dellaert, F, Yen-Chen, L. Neural volume rendering: Nerf and beyond. 31

arXiv preprint arXiv:210105204 2020;. 32

[4] Tancik, M, Casser, V, Yan, X, Pradhan, S, Mildenhall, B, Srinivasan, PP, 33

et al. Block-nerf: Scalable large scene neural view synthesis. Conference 34

on Computer Vision and Pattern Recognition (CVPR) 2022;. 35

[5] Peng, S, Dong, J, Wang, Q, Zhang, S, Shuai, Q, Bao, H, et al. 36

Animatable neural radiance fields for human body modeling. International 37

Conference on Computer Vision (ICCV) 2021;. 38

[6] Tewari, A, Thies, J, Mildenhall, B, Srinivasan, P, Tretschk, E, Yifan, 39

W, et al. Advances in neural rendering. In: Computer Graphics Forum; 40

vol. 41. Wiley Online Library; 2022, p. 703–735. 41

[7] Yu, A, Li, R, Tancik, M, Li, H, Ng, R, Kanazawa, A. Plenoctrees for 42

real-time rendering of neural radiance fields. International Conference on 43

Computer Vision (ICCV) 2021;. 44

Preprint Submitted for review /Computers & Graphics (2023) 13

[8] Reiser, C, Peng, S, Liao, Y, Geiger, A. Kilonerf: Speeding up neural1

radiance fields with thousands of tiny mlps. International Conference on2

Computer Vision (ICCV) 2021;.3

[9] Yu, A, Fridovich-Keil, S, Tancik, M, Chen, Q, Recht, B, Kanazawa,4

A. Plenoxels: Radiance fields without neural networks. Conference on5

Computer Vision and Pattern Recognition (CVPR) 2022;.6

[10] Müller, T, Evans, A, Schied, C, Keller, A. Instant neural graph-7

ics primitives with a multiresolution hash encoding. ACM Trans Graph8

2022;41(4):102:1–102:15.9

[11] Sun, C, Sun, M, Chen, HT. Direct voxel grid optimization: Super-fast10

convergence for radiance fields reconstruction 2022;.11

[12] Chen, A, Xu, Z, Geiger, A, Yu, J, Su, H. Tensorf: Tensorial radiance12

fields. arXiv preprint arXiv:220309517 2022;.13

[13] Zhang, K, Riegler, G, Snavely, N, Koltun, V. Nerf++: Analyzing and14

improving neural radiance fields. arXiv preprint arXiv:201007492 2020;.15

[14] Yücer, K, Sorkine-Hornung, A, Wang, O, Sorkine-Hornung, O. Efficient16

3d object segmentation from densely sampled light fields with applications17

to 3d reconstruction. ACM Transactions on Graphics (TOG) 2016;35(3):1–18

15.19

[15] Perazzo, D, Lima, JP, Velho, L, Teichrieb, V. Directvoxgo++: Fast20

neural radiance fields for object reconstruction. In: 2022 35th SIBGRAPI21

Conference on Graphics, Patterns and Images (SIBGRAPI); vol. 1. 2022,22

p. 156–161. doi:10.1109/SIBGRAPI55357.2022.9991779.23

[16] Faraday, M. Liv. thoughts on ray-vibrations. The London, Edinburgh, and24

Dublin Philosophical Magazine and Journal of Science 1846;28(188):345–25

350.26

[17] Gershun, A. The light field. Journal of Mathematics and Physics27

1939;18(1-4):51–151.28

[18] Moon, P, Spencer, DE. The photic field. Cambridge 1981;.29

[19] Gortler, SJ, Grzeszczuk, R, Szeliski, R, Cohen, MF. The lumigraph.30

In: Proceedings of the 23rd annual conference on Computer graphics and31

interactive techniques. 1996, p. 43–54.32

[20] Vaish, V, Wilburn, B, Joshi, N, Levoy, M. Using plane+ parallax for33

calibrating dense camera arrays. In: Proceedings of the 2004 IEEE Com-34

puter Society Conference on Computer Vision and Pattern Recognition,35

2004. CVPR 2004.; vol. 1. IEEE; 2004, p. I–I.36

[21] Levoy, M, Ng, R, Adams, A, Footer, M, Horowitz, M. Light field37

microscopy. In: ACM SIGGRAPH 2006 Papers. 2006, p. 924–934.38

[22] Ng, R, Levoy, M, Brédif, M, Duval, G, Horowitz, M, Hanrahan, P.39

Light field photography with a hand-held plenoptic camera. Ph.D. thesis;40

Stanford University; 2005.41

[23] Shum, HY, Chan, SC, Kang, SB. Image-based rendering. Springer42

Science & Business Media; 2008.43

[24] Zhou, T, Tucker, R, Flynn, J, Fyffe, G, Snavely, N. Stereo magnifi-44

cation: Learning view synthesis using multiplane images. arXiv preprint45

arXiv:180509817 2018;.46

[25] Srinivasan, PP, Tucker, R, Barron, JT, Ramamoorthi, R, Ng, R, Snavely,47

N. Pushing the boundaries of view extrapolation with multiplane images.48

In: Proceedings of the IEEE/CVF Conference on Computer Vision and49

Pattern Recognition. 2019, p. 175–184.50

[26] Mildenhall, B, Srinivasan, PP, Ortiz-Cayon, R, Kalantari, NK, Ra-51

mamoorthi, R, Ng, R, et al. Local light field fusion: Practical view52

synthesis with prescriptive sampling guidelines. ACM Transactions on53

Graphics (TOG) 2019;.54

[27] Osher, S, Fedkiw, R. Signed distance functions. In: Level set methods55

and dynamic implicit surfaces. Springer; 2003, p. 17–22.56

[28] Mescheder, L, Oechsle, M, Niemeyer, M, Nowozin, S, Geiger, A.57

Occupancy networks: Learning 3d reconstruction in function space. In:58

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern59

Recognition. 2019, p. 4460–4470.60

[29] Park, JJ, Florence, P, Straub, J, Newcombe, R, Lovegrove, S. Deepsdf:61

Learning continuous signed distance functions for shape representation.62

In: Proceedings of the IEEE/CVF Conference on Computer Vision and63

Pattern Recognition. 2019, p. 165–174.64

[30] Sitzmann, V, Martel, JN, Bergman, AW, Lindell, DB, Wetzstein, G.65

Implicit neural representations with periodic activation functions. In: Proc.66

NeurIPS. 2020,.67

[31] Schirmer, L, Schardong, G, da Silva, V, Lopes, H, Novello, T, Yukimura,68

D, et al. Neural networks for implicit representations of 3d scenes. In:69

2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIB-70

GRAPI). IEEE; 2021, p. 17–24.71

[32] Kalantari, NK, Wang, TC, Ramamoorthi, R. Learning-based view72

synthesis for light field cameras. ACM Transactions on Graphics (TOG) 73

2016;35(6):1–10. 74

[33] Kopf, J, Matzen, K, Alsisan, S, Quigley, O, Ge, F, Chong, Y, 75

et al. One shot 3d photography. ACM Transactions on Graphics (TOG) 76

2020;39(4):76–1. 77

[34] Barron, JT, Mildenhall, B, Verbin, D, Srinivasan, PP, Hedman, P. 78

Mip-nerf 360: Unbounded anti-aliased neural radiance fields. Mip-NeRF 79

360: Unbounded Anti-Aliased Neural Radiance Fields 2022;. 80

[35] Sitzmann, V, Rezchikov, S, Freeman, WT, Tenenbaum, JB, Durand, F. 81

Light field networks: Neural scene representations with single-evaluation 82

rendering. In: Proc. NeurIPS. 2021,. 83

[36] Lindell, DB, Martel, JN, Wetzstein, G. Autoint: Automatic integration 84

for fast neural volume rendering. In: Proceedings of the IEEE/CVF 85

Conference on Computer Vision and Pattern Recognition. 2021, p. 14556– 86

14565. 87

[37] Tancik, M, Mildenhall, B, Wang, T, Schmidt, D, Srinivasan, PP, 88

Barron, JT, et al. Learned initializations for optimizing coordinate-based 89

neural representations. In: Proceedings of the IEEE/CVF Conference on 90

Computer Vision and Pattern Recognition. 2021, p. 2846–2855. 91

[38] Nichol, A, Achiam, J, Schulman, J. On first-order meta-learning algo- 92

rithms. arXiv preprint arXiv:180302999 2018;. 93

[39] Yu, A, Ye, V, Tancik, M, Kanazawa, A. pixelnerf: Neural radiance fields 94

from one or few images. In: Proceedings of the IEEE/CVF Conference on 95

Computer Vision and Pattern Recognition. 2021, p. 4578–4587. 96

[40] Chen, A, Xu, Z, Zhao, F, Zhang, X, Xiang, F, Yu, J, et al. Mvsnerf: 97

Fast generalizable radiance field reconstruction from multi-view stereo. 98

International Conference on Computer Vision (ICCV) 2021;. 99

[41] Rao, C, Yu, H, Wan, H, Zhou, J, Zheng, Y, Ma, Y, et al. Icarus: 100

A lightweight neural plenoptic rendering architecture. arXiv preprint 101

arXiv:220301414 2022;. 102

[42] Schönberger, JL, Frahm, JM. Structure-from-motion revisited. In: 103

Conference on Computer Vision and Pattern Recognition (CVPR). 2016,. 104

[43] Drebin, RA, Carpenter, L, Hanrahan, P. Volume rendering. ACM 105

Siggraph Computer Graphics 1988;22(4):65–74. 106

[44] Kajiya, JT, Von Herzen, BP. Ray tracing volume densities. ACM 107

SIGGRAPH computer graphics 1984;18(3):165–174. 108

[45] Kingma, DP, Ba, J. Adam: A method for stochastic optimization. arXiv 109

preprint arXiv:14126980 2014;. 110

[46] Dugas, C, Bengio, Y, Bélisle, F, Nadeau, C, Garcia, R. Incorporating 111

second-order functional knowledge for better option pricing. Advances in 112

neural information processing systems 2000;13. 113

[47] Green, R. Spherical harmonic lighting: The gritty details. In: Archives of 114

the game developers conference. 2003, p. 4. 115

[48] Teschner, M, Heidelberger, B, Müller, M, Pomerantes, D, Gross, MH. 116

Optimized spatial hashing for collision detection of deformable objects. 117

In: Vmv; vol. 3. 2003, p. 47–54. 118

[49] Paszke, A, Gross, S, Massa, F, Lerer, A, Bradbury, J, Chanan, G, 119

et al. Pytorch: An imperative style, high-performance deep learning library. 120

Advances in neural information processing systems 2019;32. 121

[50] Wang, Z, Bovik, AC, Sheikh, HR, Simoncelli, EP. Image quality 122

assessment: from error visibility to structural similarity. IEEE transactions 123

on image processing 2004;13(4):600–612. 124

[51] Zhang, R, Isola, P, Efros, AA, Shechtman, E, Wang, O. The unreason- 125

able effectiveness of deep features as a perceptual metric. In: Proceedings 126

of the IEEE conference on computer vision and pattern recognition. 2018, 127

p. 586–595. 128

[52] Park, K, Sinha, U, Barron, JT, Bouaziz, S, Goldman, DB, Seitz, SM, 129

et al. Deformable neural radiance fields. International Conference on 130

Computer Vision (ICCV) 2021;. 131

[53] Yuan, YJ, Sun, YT, Lai, YK, Ma, Y, Jia, R, Gao, L. Nerf-editing: ge- 132

ometry editing of neural radiance fields. In: Proceedings of the IEEE/CVF 133

Conference on Computer Vision and Pattern Recognition. 2022, p. 18353– 134

18364. 135

[54] Tancik, M, Weber, E, Ng, E, Li, R, Yi, B, Kerr, J, et al. Nerfstudio: A 136

modular framework for neural radiance field development. arXiv preprint 137

arXiv:230204264 2023;. 138

http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991779

	Introduction
	Background and Foundations
	Light Fields
	Neural Networks for Image-Based Rendering
	Neural Implicit Representations

	Related NeRF-based Techniques
	Neural Radiance Fields
	Fast Training

	DirectVoxGO++
	Traditional NeRF Volume Rendering Pipeline
	Overview of [id=Rev3]DirectVoxGOour Method
	Preprocessing
	Coarse Training
	Encoding
	Background Colors

	Results
	Quantitative Comparison
	Qualitative Comparison
	Ablation Study

	Conclusion

