
GTS 2012, Chapel Hill, NC, United States, June 17 & 19, 2012

M4G: Manifolds for GPUs Library

André Maximo∗ Luiz Velho∗

Abstract

The Manifolds for GPUs library – M4G – is a compendium of tools to build an atlas structure from

a dense-polygon mesh to represent a surface in multiresolution in the GPU. The library is divided in two

main parts: the first defines a halfedge-based mesh with stellar operators and
√

2-subdivision adaptivity; the

second provides a set of applications to build a regular atlas-based representation of a given mesh. Both

functionalities complement other publicly available libraries, placing the M4G library on an ideal position to

construct a manifold-based representation of a mesh better suitable for GPUs.

1 Introduction

Recent advances in modeling, graphics and image processing allow us to envision a system where these three
areas are joined together. The many mathematical theories underpinning the discrete geometry of meshes point
to a convergence between geometry and image processing, while the fast pace of graphics-hardware processing
power increasingly support this convergence. The main barrier for the convergence to happen is that the leading
publicly available geometric softwares, such as MeshLab [3] and ParaView [6], and libraries, such as OpenMesh [5]
and CGAL [7], do not yet combine all these different concepts.

A fundamental problem in geometry processing is the one of converting a surface representation form into
another. This problem occurs whenever the surface data is generated or acquired in a representation that cannot
be handled by the intended application, or the representation is not the more appropriate one. Here we present
a library and a set of tools to convert from the traditional surface representation, namely a triangulated two-
manifold mesh, to an atlas-based representation suitable for applications in graphics processing units (GPUs).
The key features of our representation are two-fold. First, it allows adaptivity control of large and complex
surface models. Second, it offers a “minimum” interface that should be general enough for supporting conversion
from most representation forms. Both features were made possible by the combination of two well-established
notions in geometry processing: an atlas and a mesh subdivision scheme.

An atlas, A = {(Ui, ϕi)}i∈I , on a surface S ⊂ R
3 is a collection of charts, (Ui, ϕi), where Ui is a subset of S,

called the chart domain, and ϕi : Ui → ϕi(Ui) ⊆ R
2 is a bijective map, called the chart map, that maps Ui onto

a subset, ϕi(Ui), of R
2. The chart domains “cover” S, i.e., S =

⋃
i∈I

Ui, and two or more of them may overlap
at the same point in S.

From a given atlas A on S, we build a polygonal mesh representation of S. Our construction is based on an
adaptive subdivision scheme [22], which can be controlled by the CPU, and a dynamic tessellation, which can be
done by the GPU, aiming at representing any mesh property with multiresolution. The resulting representation
is a dynamic adaptive surface representation appropriate for GPU processing.

In this work we present a library dedicated to represent a discrete mesh in the computational perspective of
GPUs. Our Manifolds for GPUs library – M4G – provides an adaptive representation of a mesh in the CPU,
using charts in an atlas structure, that can be used to further tessellate regions of the same mesh in the GPU,
on each chart interior. The M4G library also provides a number of useful applications to promote a GPU-based
geometric system: different conversion algorithms from triangular to quadrangular (tri2quad) mesh based on
recent articles [9, 21]; mesh simplification using CGAL [7] to create base meshes from dense-polygon meshes;
fast geodesics curves computation [1] for each edge of a base mesh; mesh parameterization also using CGAL [7]
to build chart domains for each face of a base mesh; and a samplify procedure to create regularly sampled charts
based on triangle rasterization using ordinary scan conversion from OpenGL [4]. In summary our library is a
compendium of source codes and applications to aid the development of a fully integrated geometric system.

∗Institute of Pure and Applied Mathematics, {andmax,lvelho}@impa.br



Minisymposium on Publicly Available Geometric/Topological Software, 2012

2 Related Work

The concept of atlas generalizes the one of parameterization, and it has been used in the context of texture map-
ping [15], remeshing [17], and geometry encoding [18]. In all cases, the surface S was assumed to be represented
by a polygonal mesh. Here, we employ the notion of atlas without assuming any particular representation form
for S. Instead, we assume that the atlas A is described by a network of curves, e.g. geodesics, on S which defines
the chart domain boundaries. Figure 1 details this concept in our library, a dense-polygon mesh is simplified to
a base mesh and a set of geodesic curves are computed for each edge of the base mesh.

(a) (b) (c)

Figure 1: Example of the Bimba dataset, showing the original dense mesh (a), the base mesh (b) and the
geodesics curves associated with the edges of the base mesh (c). The rendering was done using ParaView [6].

The adaptive multiresolution feature of the representation provided by our M4G library is particularly suited for
progressive visualization [12]. The ability to separate the mesh into parts that must be sampled densely and parts
that can be represented by coarse geometry is also useful for reducing the bandwidth required for transmitting
a surface between different computational domains (e.g. hard-disk, main memory and GPU memory).
Perhaps the most powerful concept behind the manifold representation is that it enable us to work locally

on a surface similarly to the two-dimensional Euclidean space. This is achieved through a parameterization,
that establishes a mapping of the surface embedded in 3D to a region of the plane. The parameterization also
defines a coordinate system on the surface. But since this mapping is essentially flattening a curved surface,
inevitably it will cause geometric distortions. Parameterization methods try to reduce these distortions in order
to preserve certain properties, such as angles, distances and areas [11]. Also, depending on how this mapping is
computed, it can be designed to conform to a canonical region, such as a regular polygon (therefore constraining
the boundary) or to leave the boundary free as an additional degree of freedom for distortion minimization [10].
One of the tools of our M4G library is a parameterization tool allowing the exploration of methods and border
contraints to construct charts for a given mesh.
Surface parameterization also depends on the topology of the surface. Since it is, in general, different from the

plane it is not possible to map the entire surface without cutting it open. In that respect, the parameterization
methods can be classified into local and global, that respectively compute the mapping for small surface patches
or the entire surface [17].
The atlas structure we consider relies on a network of curves on the surface. Based on the assumption that

we can compute curves across chart domains, as well as subdivide their boundary curves, we can define an
intrinsic, curve-based parametrization of each chart. This kind of parametrization is particularly useful because
it naturally yields a chart map, and allows for a good control of both the map and the boundary of the region. An
example of this concept is the Multiresolution Adaptive Parameterization of Surfaces (MAPS) [13]. In addition,
it has been successfully used before for computing geodesic distances in the context of mesh parametrization [14]
and remeshing [19]. Finally, the collection of individual charts, i.e. the domains and their associated maps, is a
piecewise parametrization for the whole surface.



GTS 2012, Chapel Hill, NC, United States, June 17 & 19, 2012

Independently of the surface representation, very often for compatibility reasons, it becomes necessary to
convert to a polygonal approximation in order to perform certain tasks, such as visualization. In these situations,
it is desirable to have a mechanism to produce an adaptive mesh. Examples of such strategies are the progressive
meshes [12] and the stellar 4-k meshes [24]. Here we adopt the 4-8 adaptation scheme [23], which is a variant of
the stellar 4-k mesh, in our base data structure inside our library.

3 The M4G Library

Our library is divided in eight repositories, publicly available in our institution gitorious server (http://
gitorious.impa.br/about) under the GNU GPL 3 License [2]. The first repository contains our main con-
tribution and it is called adaptive 4-8 mesh (a48 ) based on [25] and extending [23]. The a48 repository (at $
git clone git://gitorious.impa.br/a48/a48.git) hosts an efficient implementation of a polygon mesh data
structure, using half-edge [16] (cf. class MeshT in figure 2); a powerful set of operators based on Stellar Theory,
named stellar operators, for mesh manipulation (cf. class StellarMeshT); and an adaptive mesh representation
with simplification and refinement strategies (cf. class AdaptiveMeshT). The next two repositories, called mesh

(/a48/mesh.git1) and stellar (/a48/stellar.git1), are subsets of the first repository, hosting all codes related
to MeshT and StellarMeshT, made available for teaching purposes. The top block of figure 2 summarizes
our first repository structure (for a more in-depth documentation refer to www.impa.br/~andmax/a48).

Figure 2: M4G library overview: (top) the classes and policies to manipulate and represent a meshed surface;
(bottom) the applications toward a GPU-based geometric system.

The last five repositories host five different applications constructed to support a manifold-based representation
of a mesh on the GPU. The first is called simplify (at $ git clone git://gitorious.impa.br/m4g/simplify.git)
and contains a command-line software to expose CGAL’s simplification process [7] to build base meshes from
dense-polygon meshes (cf. application Simplify in figure 2). The second is called matching (/m4g/matching.
git1) and uses Lemon [8] to implement a triangular-to-quadrangular application based on a 2-matching graph-
based algorithm [9] on the triangular mesh dual (cf. Matching). Two other algorithms for triangular-to-
quadrangular conversion [21, 25] can be used from the tri2quad application in the first a48 repository. These
three tri2quad conversion algorithms were carefully implemented and return better and correct results where
MeshLab [3] fails.
The next repository is called geodesic (/m4g/geodesic.git1) and contains another command-line software

to expose geodesic curves computation [1] (cf. application Geodesic) using the implementation made available
with the Fast exact and approximate geodesics on meshes algorithm [20]. Each geodesic is computed in parallel
(using as many CPU cores as available) over a dense mesh connecting vertices of each corresponding base-mesh
edge. The fourth repository is called parameterize (/m4g/parameterize.git1) and uses CGAL [7] to unveil
several local parameterization algorithms with different border types (cf. application Parameterize). The last
application repository is called samplify (/m4g/samplify.git1) and uses OpenGL [4] to rasterize a surface patch
generating a regularly sampled chart from a parameter domain (cf. application Samplify). The bottom block
of figure 2 summarizes our application repositories.
The repositories of the M4G library are separate on purpose to facilitate its different uses. Each repository

is a module with its own dependancies, making it easier for a subset utilization (e.g. an input triangular mesh
enhanced with stellar operations and tri2quad functions can be used to develop a new simplification process not
possible using only CGAL [7]). All eight repositories have user instructions (in a read-me file) with simple usage
examples and sample models.

1For the full repository include: git://gitorious.impa.br before each address.



Minisymposium on Publicly Available Geometric/Topological Software, 2012

Acknowledgment

We acknowledge the grant of the first author provided by Brazilian agency CNPq (National Counsel of Techno-
logical and Scientific Development).

References

[1] Geodesic. http://code.google.com/p/geodesic.

[2] GNU General Public License version 3. http://www.gnu.org/licenses/gpl.html.

[3] MeshLab. http://meshlab.sourceforge.net.

[4] OpenGL. http://www.opengl.org.

[5] OpenMesh. http://openmesh.org.

[6] ParaView. http://www.paraview.org.

[7] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[8] Lemon, Graph Library. http://lemon.cs.elte.hu.

[9] J. Daniels II, M. Lizier, M. Siqueira, C. T. Silva, and L. G. Nonato. Template-based Quadrilateral Meshing. Computers &
Graphics, 35(3):471 – 482, 2011. http://dx.doi.org/10.1016/j.cag.2011.03.024.

[10] M. Desbrun. Processing Irregular Meshes. In Proceedings of the Shape Modeling International 2002 (SMI’02), pages 157–,
Washington, DC, USA, 2002. IEEE Computer Society. http://portal.acm.org/citation.cfm?id=882487.884134.

[11] M. Floater, K. Hormann, and M. Reimers. Parameterization of Manifold Triangulations. In Approximation Theory X: Abstract
and Classical Analysis, pages 197–209. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.899.

[12] H. Hoppe. Progressive meshes. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’96, pages 99–108, New York, NY, USA, 1996. ACM. http://doi.acm.org/10.1145/237170.237216.

[13] A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution Adaptive Parameterization of Surfaces.
In Proc. ACM/SIGGRAPH Conf., pages 95–104, 1998. http://10.1145/280814.280828.

[14] H. Lee, Y. Tong, and M. Desbrun. Geodesics-based One-to-One Parameterization of 3D Triangle Meshes. IEEE MultiMedia,
12:27–33, January 2005. http://portal.acm.org/citation.cfm?id=1042196.1042327.

[15] J. Maillot, H. Yahia, and A. Verroust. Interactive Texture Mapping. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’93, pages 27–34, New York, NY, USA, 1993. ACM. http://doi.acm.org/

10.1145/166117.166120.

[16] M. Mäntylä. An introduction to solid modeling. Computer Science Press, 1988. http://books.google.com.br/books?id=

CJVRAAAAMAAJ.

[17] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic Global Parameterization. ACM Trans. Graph., 25:1460–1485,
October 2006. http://doi.acm.org/10.1145/1183287.1183297.

[18] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-Chart Geometry Images. In Proceedings of the
2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, SGP ’03, pages 146–155, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association. http://portal.acm.org/citation.cfm?id=882370.882390.

[19] O. Sifri, A. Sheffer, and C. Gotsman. Geodesic-based Surface Remeshing. In In Proc. 12th Intnl. Meshing Roundtable, pages
189–199, 2003. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.1900.

[20] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. Fast exact and approximate geodesics on meshes. ACM
Transactions on Graphics (TOG), 24(3):553–560, 2005. http://dx.doi.org/10.1145/1186822.1073228.

[21] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and E. Puppo. Practical Quad Mesh Simplification. Computer Graphics Forum
(Special Issue of Eurographics 2010), 29(2):407–418, 2010. http://vcg.isti.cnr.it/Publications/2010/TPCPP10.

[22] L. Velho. Stellar Subdivision Grammars. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, SGP ’03, pages 188–199, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association. http://portal.

acm.org/citation.cfm?id=882370.882396.

[23] L. Velho. A Dynamic Adaptive Mesh Library based on Stellar Operators. Journal of Graphics Tools, 9(2):1–29, 2004.

[24] L. Velho and J. Gomes. Variable Resolution 4-K Meshes. In Computer Graphics and Image Processing, 2000. Proceedings XIII
Brazilian Symposium on, pages 123–130, 2000. http://10.1109/SIBGRA.2000.883904.

[25] L. Velho and D. Zorin. 4-8 Subdivision. Computer Aided Geometric Design, 18(5):397–427, 2001. http://dx.doi.org/10.

1016/S0167-8396(01)00039-5.


