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Abstract

We discuss the problem of adaptive polygonization of regular surfaces of the euclidean 3D space,
and present effective algorithms for computing optimal polygonizations of surfaces described in
parametric or implicit form.

Keywords: Surface approximation, polygonization, parametric surfaces, implicit surfaces, geo-
metric modeling.

1 Introduction

The polygonization of surfaces is a classical problem in computer graphics and geometric modeling
that has many practical applications. The problem is computing a piecewise linear approximation
for a smooth surface described either in parametric or implicit form.

In this paper, we present a conceptual framework for the piecewise linear approximation of
surfaces and also a methodology for constructing good polygonal approximations while keeping the
number of polygons low. Based on the general principles in this methodology, we describe two
specific new algorithms for the adaptive polygonization of parametric and implicit surfaces.
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and Rio de Janeiro State Foundation for Research (FAPERJ). To be submitted to JBCS special issue on Computer
Graphics and Image Processing. Last revision on September 12, 1997.
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1.1 Importance of the Problem

A polygonal approximation is the simplest form of surface description and therefore is the represen-
tation of choice in the implementation of a large number of algorithms. Moreover, existing graphics
hardware and libraries (e.g., OpenGL) have special support for polygonal meshes, specially triangu-
lar meshes. Thus, despite the existence of more sophisticated standard forms for surface description
(e.g., Bézier, B-splines, NURBS, etc.), there is always a need to represent surfaces in polygonal form.

1.2 Parametric and Implicit Surfaces

The piecewise linear approximation of surfaces can be posed as the problem of obtaining a polygonal
approximation for a smooth 2-dimensional manifold embedded in the 3-dimensional euclidean space
R3. This geometric object is usually called a regular surface [1].

By conveniently subdividing a regular surface S, we can write S =
⋃m

i=1 Si, where each Si is a
regular surface (with boundary), defined either parametrically or implicitly. In other words, for each
i there exists a regular parameterized patch fi:Ui ⊂ R2 → Si ⊂ R3, f(Ui) = Si, or an “implicit
patch” gi:R3 ⊃ Vi ⊃ Si → R, such that g−1(0) = Si.

Therefore, in this context, the problem of approximating a regular surface reduces to the problem
of obtaining a polygonal approximation for an implicit or a parametric surface patch.

1.3 Motivation and Goals

Polygonization methods for parametric and implicit surfaces have been studied exhaustively in
the literature, but no conceptual survey exists. Since conversion between parametric and implicit
representations is difficult [2], or even impossible, it is important to devise good polygonization
methods for both class of surfaces.

The polygonization problem is well understood, and the existence of many published methods
show that the area is mature. Therefore, there is a need for a review of the state of the art, containing
a theoretical discussion and an analysis of the basic mechanisms behind existing solutions. The goal
in any review of this kind should be to look for a deeper understanding of the problem, one that
helps to reveal new solutions. This paper contains both a conceptual review of the state of the art
and new solutions for the polygonization problem.

1.4 Structure of the Paper

In Section 2, we discuss the polygonization problem as a mathematical problem that needs com-
putational solutions. In Section 3, we extend this theoretical discussion to adaptive methods. In
Section 4, we discuss previous methods in the light of this theoretical framework. Section 5 describes
a new polygonization method for parametric surfaces, and Section 6 describes a new polygonization
method for implicit surfaces. Finally, Section 7 contains a discussion of these two solutions.

2 Piecewise Linear Approximations

In this section, we formally define the polygonization problem and discuss some issues faced by
computational solutions for this problem.

Algorithms to obtain a polygonal approximation to a surface are known under the generic name
of piecewise linear methods, or simply PL methods. The resulting piecewise linear surface is called a
polygonization of the regular surface.
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The polygonization problem can be compared to the problem of carving a precious stone: we
have to carve planar faces with a minimum loss of material. Mathematically, this problem can be
stated in the following way:

Polygonization Problem. Given a surface M , find a polygonal surface M̃ , such that M̃ has the
same topology as M and M̃ approximates the geometry of M , as close as desired.

More precisely, we have:

• M̃ is a piecewise linear manifold [3];

• There exists a homeomorphism h:M → M̃ (by definition, this guarantees that M̃ and M have
the same topology);

• Given a tolerance ε > 0, for every point p in M we have d(p, h(p)) < ε, where d is the
ordinary euclidean distance in the ambient space R3 (this guarantees that the geometry of M̃

approximates the geometry of M within the tolerance ε).

The error condition means that the polygonal surface is contained within a tubular neighborhood
of radius ε of the regular surface, provided that ε is sufficiently small (see Figure 1).

Figure 1: Polygonization and tubular neighborhood.

We say that a surface polygonization is optimal if it has the smallest number of polygons among
all polygonizations that satisfy the same approximation error. Finding optimal polygonal approxi-
mation with the exact minimum number of polygons required for a given accuracy is a very difficult
problem (probably NP-hard), and we must rely in good heuristics.

Trying to minimize the size of the approximation is important, but some applications have further
requirements on the geometry of each polygon. For instance, thin, long polygons should be avoided
in finite-element mesh generation and terrain modeling.

A related problem is decimation: reduce the number of polygons in an existing polygonal approx-
imation while remaining within the chosen tolerance [4]. Optimal decimation seems just as difficult
as optimal approximation.

3



2.1 Building a Polygonal Approximation

Polygonization methods incorporate two basic operations: sampling and structuring.
The sampling operation uses the surface geometry to generate a set of points on the surface. The

structuring operation reconstructs a polygonal surface from the samples. This polygonal surface has
the same topology of the original surface and approximates its geometry, as described above.

Sampling points on a parametric surface is a simple matter: just evaluate the parameterization
function on a sample of the domain. As explained in Section 2.2, this domain sampling usually
provides a natural structure for the samples on the surface.

Sampling points on an implicit surface is not so easy: conceptually, several non-linear equations
in three variables must be solved. However, as explained in Section 2.2, this sampling can be done
indirectly, by sampling the ambient space around the surface.

2.2 Polygonization Methods

The simplest strategy for polygonizing a parametric surface f :U ⊂ R2 → R3 uses an intrinsic
approach: We subdivide the domain U and use the function f to construct the polygonal approx-
imation for the surface from the domain subdivision. The rationale behind this method is that,
for a sufficiently fine triangulation of the domain, the surface f can be approximated by an affine
surface f̃ that coincides with f on the vertices of the triangulation. The most usual case occurs
when the domain is a rectangular region of the plane R2, subdivided into a regular triangular mesh
(that is, all of the triangles in the mesh are congruent, but possibly in different orientations). In
this case, we say that the polygonization is uniform. Figure 2 illustrates this for a parametric curve
f :U ⊂ R → R2.

Figure 2: Uniform approximation of a parametric curve.

The simplest strategy for polygonizing an implicit surface f :V ⊂ R3 → R uses an extrinsic
approach: We subdivide the ambient space V into simplicial sub-cells V = ∪Vi, and compute a
polygonal approximation to the surface inside each sub-cell Vi. The rationale behind this method is
that, for sufficiently small spatial sub-cells, the solution of the equation f = 0 is approximated by the
solution of the corresponding affine equation f̃ = 0, where f̃ is an affine approximation to f inside
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the cell (there is a unique affine function f̃ that coincides with f on the vertices of the cell). The
most common case occurs when the domain V is a cubic region of the space R3, subdivided into a
regular cubic mesh (i.e., all cubes in the mesh are congruent). These cubes are then subdivided into
tetrahedrals, to obtain a simplicial decomposition of V . In this case, we say that the polygonization
is uniform. This is illustrated in Figure 3 for an implicit curve f :V ⊂ R2 → R.

Figure 3: Uniform approximation of an implicit curve.

3 Adaptive Polygonization

Uniform polygonization methods are simple to understand and easy to implement. The connectivity
of the uniform mesh provides the structure for a polygonal mesh approximating the surface. There
are, nevertheless, some interesting optimizations to avoid computing f more than once at each vertex
of the mesh. For example, one can see a regular mesh as a completely balanced quadtree, and then
traverse it down to the lowest level, where the cells reside, while computing f exactly once at each
vertex.

Based on the rationale behind the two methods described above, it is apparent that if a surface
has high frequency details (large variations), then we need many small polygons to approximate it;
on the other hand, if the surface has only low frequency details (small variations), then we should
be able to obtain good approximations even with few large polygons.

In general, the frequency details in a surface vary across the domain. Therefore, in uniform
polygonizations, we are forced to use a large number of polygons everywhere in the mesh in order
to obtain good approximations in the high-frequency regions.

A better alternative to uniform decomposition is adaptive polygonization, in which the sam-
pling rate (and consequently the polygon size) varies across the domain according to the frequency
variation of the surface.

In this paper, we are concerned with adaptive polygonizations of parametric and implicit surfaces.
We shall use the curvature as a geometric measure of surface variation. Therefore, the adaptive
polygonization methods we describe below sample the domain finely in regions where the curvature
variation is high, and coarsely in regions where the curvature has a low rate of variation.
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Adaptive methods try to produce an optimal polygonization, i.e., to obtain a good approximation
of the surface within a prescribed accuracy, using the minimum number of polygons. Recall that
finding the exact minimum number of polygons is very hard, and that we must rely in good heuristics.

3.1 Adaptation Mechanisms

Adaptive polygonization algorithms are more complex than uniform algorithms because they must
solve two interdependent problems:

• perform optimal sampling;

• ensure correct structuring.

Optimal sampling guarantees a faithful geometric approximation, and depends on the adaptation
criteria (i.e. curvature). Correct structuring guarantees the global topological consistency of the
polygonal mesh and depends on the structuring mechanism.

The main difficulty is that when changes are made locally to the sampling rate, the mesh topology
may be affected globally. Therefore, it is necessary to carefully synchronize the solution of these two
problems; otherwise, the polygonization may exhibit holes caused by wrong connectivity in the mesh
(also called topological inconsistency). For example, different levels of subdivision in two adjacent
cells can create a crack along the boundary between them (Figure 4). In this case, cracks show
up in the surface and the piecewise approximation is not continuous. This problem is caused by a
topologically inconsistent decomposition (Figure 5).

Figure 4: Quadtree domain decomposition.

3.2 Classification Criteria

Adaptive polygonization algorithms can be classified according to the way that they implement
the basic operations of sampling and structuring, while solving the approximation and consistency
problems.

There are two basic strategies to obtain a correct structuring of the cells: perform sampling and
structuring in a single step, or in separate steps. When done in a single step, there are two main
methods:
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Figure 5: Surface cracks due to topological inconsistency in the quadtree decomposition shown in
Figure 4 [5].

1. restricting a hierarchical subdivision; or

2. exploiting cell coherence.

The first approach uses a restricted spatial subdivisions. The subdivision is maintained balanced
with repeated refinement steps that modify a single cell at each step. Whenever a cell is divided, its
neighbors are constrained to be at levels immediately above or below. [5].

The second approach focuses on the common boundary elements of the subdivision. In the case
of parametric surfaces, these elements are the edges of a 2D hierarchical mesh (quadtree); in the
case of the implicit surface, these elements are the faces of a 3D hierarchical mesh (octree). The cells
are subdivided independently, constraining the polygonization along common boundary elements,
according to the adaptation criteria. In that way, a consistent decision can be made when splitting
neighbor cells sharing the same boundary element [6].

When sampling and structuring are done in separate steps the main issue is how to pass infor-
mation between the two stages of the algorithm in order to guarantee topological consistency.

Another strategy is to use an algorithm that does not enforce correct structuring, and fix the
inconsistencies in a post-processing step. Typically, such post-processing implies the construction
of a topological data structure representing the polygonal approximation so that inconsistencies in
neighboring faces can be found [7].

4 Previous Work

In this section we give an overview of the existing polygonization methods and compare them with a
new methodology for adaptation based on the conceptual framework presented in Sections 2 and 3.

4.1 Algorithms for Parametric Surfaces

Previous algorithms for adaptive polygonal approximation of parametric surfaces subdivide patches
recursively by splitting edges at their midpoints and creating internal edges to connect these sample
points, until the surface patches are flat within a tolerance.

Three approaches have been used to obtain correct structuring, thus eliminating cracks: Clark
in his pioneering work [8] uses cell coherence; vonHerzen and Barr [5] use restricted quadtrees;
Tamminen and Jansen [7] perform post-processing.
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The main deficiency of these algorithms is in the control of the adaptation process. Recursive
subdivision is controlled by flatness tests for surface patches that only exist for special classes of
surfaces [9-16], with a single exception to the use of interval arithmetic [17].

4.2 Algorithms for Implicit Surfaces

Previous adaptive polygonization algorithms for implicit surfaces employ a full 3D adaptive partition
of space, and perform sampling and structuring in a single step. They recursively subdivide a large
3-dimensional cell complex in which the implicit surface is embedded, until the adaptation criteria
are met; at that stage, polygons are generated for the cells intersecting the surface.

Correct structuring is achieved either by using a restricted octree [18, 19]. or by imposing
coherence across the faces of a tetrahedral subdivision [20].

The main deficiency of these algorithms is their high complexity. Strictly speaking, the 3-
dimensional search is necessary for computing a correct solution in the case of surfaces with arbitrary
topology. Unfortunately, such a requirement places an enormous burden in actual programs, both
in terms of implementation and performance. This is mainly due to the 3D combinatorics of the
problem, as well as, the need of space and time resources.

Recently, however, range analysis techniques [21] have been used successfully to avoid full enu-
meration of implicit surfaces in high-resolution meshes [22-25].

4.3 A New Strategy for Adaptation

We propose a general methodology to solve the adaptive polygonization problem. Using this method-
ology we are able to develop two new algorithms for the approximation of parametric and implicit
surfaces. These two polygonization methods will be described respectively in Sections 5 and 6. They
share three main principles:

• start the adaptive decomposition from a coarse uniform decomposition of the domain;

• decouple sampling from structuring;

• exploit edge coherence to guarantee topological consistency by construction.

With this methodology, unlike in previous algorithms, the polygonization problem is solved in
two separate steps that correspond to the operations of sampling and structuring.

The coupling of sampling and subdivision imposes restrictions on the structure of the decom-
position. This requires complex algorithms and often results in sub-optimal polygonal meshes. By
eliminating such a restriction we are able to develop simpler and more efficient methods.

Note that this strategy does not involve any post-processing. Instead, sampling and structuring
are linked through edge coherence ensuring in this way topological consistency of the mesh.

5 Polygonization of Parametric Surfaces

We now present an adaptive polygonization algorithm for parametric surfaces that uses complete
edge sampling to avoid cracks, and area scanning to guide the subdivision [26]. This algorithm com-
bines adaptive curve sampling with simplicial subdivision. This strategy allows better adaptation,
trivially ensures global consistency, and produces meshes with an optimal number of polygons.

The basic algorithm is as follows:

8



1. [Initialization] Start with a coarse uniform simplicial decomposition of the parametric patch
domain. If the domain is rectangular, this can be simply the subdivision of the domain along
its diagonal into two triangular cells.

2. [Curve generation] Sample the edges of all cells in the initial decomposition adaptively to
construct a polygonal approximation of the corresponding curves on the surface.

3. [Cell subdivision] Subdivide each cell by constructing internal edges, based on the number of
points on the boundary edge curves. Repeat the sampling in step 2 for each new internal edge.

4. [Test for flatness] For each cell, test the corresponding surface patch for flatness.

5. [Recursion] Recursively subdivide cells whose patches are not flat. A flat patch is one whose
edges are flat, according to the sampling in step 2.

Unlike previous methods for parametric surfaces, edge sampling is completely done at each
subdivision step, while creating new edges in step 3. Further subdivisions respect this sampling.
This is the key factor for optimal sampling and global consistency. Because edge curves are generated
first, in a single operation, it is possible to find the minimum number of sample points that produces
the desired approximation. The approximation criterion is given by the flatness test. Moreover,
global consistency is automatically guaranteed, because edge curves are shared by adjacent cells.

Sections 5.1 and 5.2 below contain details of steps 2 and 3 of the algorithm.

5.1 Curve Generation

The edges in the domain decomposition are straight line segments, but the corresponding curves
on the surface are not. The goal of the sampling in step 2 is to build an adaptive polygonal
approximation of these curves.

There are many methods for adaptive sampling of parametric curves [15, 27-30]. In our imple-
mentation we use multiple random probing, an extension of single random probing [30], because it
is easy to implement and has many degrees of freedom to help achieve a good sampling [26].

This method implements a stochastic search for splitting the edge at the point of highest curvature
of that segment of the curve. Such a subdivision scheme is specially important in the early stages of
the subdivision, when the edges are long and the surface can oscillate significantly from one extreme
to the other. This procedure can be seen as a heuristic for finding the critical points of the curve,
e.g., the points of maximum curvature.

5.2 Cell Subdivision

To subdivide each triangular cell, we classify its edges according to the number of sample points
created during the curve generation step of the algorithm. A simple edge is composed of a single
linear segment; it corresponds to a flat curve segment on the surface. A complex edge contains
interior sample points, and therefore it is composed of several linear segments corresponding to a
polygonal curve on the surface. The subdivision of the cells is based on the classification of each cell
edge as simple or complex. There are four possible cases (Figure 6):

1. three simple edges: Recursive subdivision terminates and the procedure outputs one triangle,
corresponding to a flat surface patch (Figure 6a).
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2. two simple edges: The cell is divided into two sub cells. A new internal edge is created
by choosing an internal point in the complex edge and connecting it to the opposite vertex.
(Figure 6b).

3. one simple edge: The cell is divided into two sub cells. A new internal edge is created by
connecting an internal point in one of the complex edges to the opposite vertex. (Figure 6c).

4. no simple edge: The cell is divided into four sub cells by generating new three internal edges
connecting internal points between each pair of adjacent complex edges. (Figure 6d).

(a) (b) (c) (d)

Figure 6: Four cases for cell subdivision in the path-based adaptive method: three simple edges (a);
two simple edges (b); one simple edge(c); no simple edge(d).

5.2.1 Creation of Internal Edges

In the cell subdivision process described above, the choice of the internal splitting edge is not unique.
The algorithm uses the following criteria to make a choice.

For each potential splitting edge, we polygonize the corresponding curve on the surface using
the algorithm described in Section 5.1. We choose the edge that corresponds to the curve with the
smallest number of polygonal segments. This criterion minimizes the total number of segments in
internal edges, and is a good heuristic for determining curves with low curvature variations.

These choices made by the algorithm in the subdivision step is a key factor for global optimal
sampling. In fact, the choices provide the best subdivision of each patch: good accuracy of the
approximation and small number of polygons.

5.3 Comments

One drawback of the current implementation of the method is that it is slow, due to the exhaustive
search used to locate curves with low variation of the curvature inside each cell. A dynamic program-
ming approach could probably be used to avoid recomputing candidates edges in later subdivisions.
On the other hand, the cost of the method as described here may be appropriate for applications
that do not change the surfaces, such as high-quality rendering.

5.4 Examples

We now show four examples of the method in action. For each example, we show the parameter
domain decomposition and a 3-dimensional image of the polygonal approximation, rendered with
Gouraud shading.
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Cylinder. Figure 7 shows the cylinder given by:

x = cos u, y = sinu, z = v

u ∈ [0, 3.12], v ∈ [0, 1].

The polygonization is built along lines that are parallel to the main axis of the cylinder. These
lines correspond to paths of minimum curvature on the surface, which are, in this case, straight line
segments. The other lines — the boundaries and the diagonal — are part of the initial triangulation.

Figure 7: Domain decomposition (top) and polygonal approximation (bottom) for the cylinder given
by f(u, v) = (cos u, sinu, v), where u ∈ [0, 3.12] and v ∈ [0, 1].

Saddle. Figure 8 shows the “saddle” given by:

x = u, y = v, z = (uv)3

u ∈ [0, 1], v ∈ [0, 1].

Note how the polygonization adapts to the surface’s geometry. The flat center is covered by only six
triangles. The curved sides form a ruled structure in which the triangles are aligned transversally
to the steepest directions.

Figure 8: Domain decomposition (top) and polygonal approximation (bottom) for the saddle given
by f(u, v) = (u, v, (uv)3), where u ∈ [0, 1] and v ∈ [0, 1].
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Mountain. Figure 9 shows the “mountain” given by:

x = u, y = v, z = (sinu sin v)4

u ∈ [1.5, 2.7], v ∈ [0.75, 1.65].

Here we can see that the polygonization follows contour lines of the surface as in a topography map.
These curves are level sets parallel to the base xy-plane. Besides their importance in geometric
approximation, contour lines are perceptually insightful because they depict the surface’s height
variations.

Figure 9: Domain decomposition (top) and polygonal approximation (bottom) for the mountain
given by f(u, v) = (u, v, (sinu sin v)4), where u ∈ [1.5, 2.7] and v ∈ [0.75, 1.65].

Needles. Figure 10 shows the “needles” given by:

x = u, y = v, z = 0.8 sinu sin v

u ∈ [1.33, 11.33], v ∈ [10.25, 21.25].

This surface has both high frequency detail and sharp variations. Even though the algorithm started
with just two triangles covering the entire parametric domain, it was able to capture all important
features in the surface. Moreover, the polygons are uniformly distributed around those features.

6 Polygonization of Implicit Surfaces

In this section, we present an adaptive polygonization method for implicit surfaces [31]. The algo-
rithm is easy to implement and is very efficient both in storage and execution time. For this reason,
it provides a practical solution for real-world applications.

The basic algorithm uses both an extrinsic and intrinsic subdivision approach:

1. [Initial Mesh] Start with a coarse uniform decomposition of the domain of the implicit function
and compute a polygonal approximation to the surface (extrinsic step).

2. [Cell Subdivision] Refine the polygonal mesh from the previous step using edge coherence
(intrinsic step).

3. [Test of flatness] For each cell, test the corresponding implicit surface for flatness.
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Figure 10: Domain decomposition (top) and polygonal approximation (bottom) for the needles given
by f(u, v) = (u, v, 0.8 sinu sin v), where u ∈ [1.33, 11.33] and v ∈ [10.25, 21.25].

4. [Recursion] Recursively subdivide cells whose corresponding implicit surface is not flat.

The key to simple adaptation is the separation between structuring and sampling. Structuring is
done in step 1, where a coarse sampling is also performed. In the step 2, the structure of the initial
mesh guides the adaptive sampling and, at the same time, provides the connectivity information for
maintaining geometrical consistency.

The first step takes place in a 3-dimensional space (i.e., in the region delimited by the domain of
the implicit function), while the second step is performed intrinsically (i.e., using the polygonal mesh
approximating the implicit surface). This reduction in the dimensionality of the problem makes the
computation very efficient.

The flatness test uses the implicit surface curvature. The curvature is estimated over the corre-
sponding cell using the deviation of the surface normal from the normal of the polygon’s support
plane.

Below, we explain each step in detail.

6.1 Initial Mesh

This process corresponds to an uniform polygonization of the implicit surface, which is a well un-
derstood problem and has various alternative solutions available in the graphics literature [32-35].
We employ a polygonization algorithm based on a simplicial space decomposition [36]. This is an
elegant solution for the problem and it is a perfect match for our mesh adaptation method because
of its simplicity and conciseness.

The uniform polygonization algorithm decomposes the bounding box of the implicit function
domain using a simplicial cell complex. Our simplicial decomposition employs the classical Coxeter-
Freudenthal space subdivision scheme [37], which is illustrated in Figure 11 for the 2D case. For the
3D case, see [36].

If the resolution of the space decomposition is adequate, a surface-cell intersection can be de-
termined from the values of the implicit function f at the vertices of the cell. This is because the
surface defined by f(x, y, z) = 0 intersects a cell only if the value of f changes from positive to
negative within the cell, as indicated in Figure 12 for the 2D case.
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When the surface intersects a cell, it is approximated by an affine mapping inside the cell, thus
generating a new polygon that is added to the mesh. Polygon vertices are the intersection points of
the implicit surface with the edges of the cell (see the dashed line in Figure 12).

6.2 Cell Subdivision

A triangle, with vertices v0, v1, v2, is subdivided into four triangles by splitting its edges, e0 = v0v1,
e1 = v1v2, and e2 = v2v0, at their midpoints — m0, m1 and m2 — and connecting the midpoints of
adjacent edges. A diagram illustrating this scheme is depicted in Figure 13.

The decision to subdivide the triangle is based on a classification of the surface curvature along
its edges. If all edges are flat, then no subdivision is done, and the algorithm outputs that triangle.
If one or more edges are not flat, then the current polygonal approximation the triangle must be
subdivided. In this case, the edge midpoints are computed and the procedure is called recursively
for each piece.

6.2.1 Edge Coherence

The most important part of the adaptation process — the edge coherence mechanism, is implemented
in the computation of edge midpoints. If a triangle [v0v1v2] is not flat, then it must be subdivided.
After computing the true midpoint mi of the linear segment ei = vivj , we have two options to avoid
cracks:

1. Always project the midpoint mi onto the implicit surface and subdivide the adjacent polygon
by connecting mi to the opposite vertex. This has the advantage of producing a PL-manifold
structure, but would require a more complex scheme to guarantee the topological consistency
of the mesh.

2. Project the midpoint mi onto the surface only if the edge ei is not flat. In this case, for flat
edges, no cracks are created even if we do not split the adjacent polygon. This solution has
the advantage of generating fewer polygons and is adequate if a PL structure is not required.

We use the second option in our implementation because of its simplicity and efficiency.

Figure 11: Coxeter-Freudenthal decomposition of the square in R2.
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Figure 12: Intersection of a 2D cell with an implicit curve.

Figure 13: Subdivision scheme of a triangle

6.2.2 Projection

The projection of the midpoint mi onto the implicit surface amounts to computing the point p0 such
that f(p0) = 0 and, at the same time, minimizes ||p0 − mi|| (this problem has a unique solution
because the point mi is inside a tubular neighborhood of the surface).

The solution of such an optimization problem can be calculated using various numerical tech-
niques, such as gradient descent. We employ a physics based method that is simple to implement
and provides good accuracy control (see [38] for details).

6.3 Comments

This new hybrid extrinsic/intrinsic polygonization method for implicit surfaces has one limitation
compared with methods that employ a full extrinsic scheme. If the initial sampling is too coarse
in relation to the complexity of the implicit shape, the polygonization may not capture the correct
topology of the surface. This is because structuring is done in 3D during the first pass. At that
stage, the method commits to a topology and proceeds on to the second pass, which works in 2D and
changes just the geometry. However, this is not a serious problem because there is usually enough
information about the surface to determine the appropriate sampling rate for the initial step of the
algorithm.

The performance gains are significant because the initial mesh computation, which is more costly,
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needs to be executed only once – at a fixed, coarse resolution – while the intrinsic recursive subdi-
vision is a fast operation.

6.4 Examples

We now show two examples of the method in action.

Blobby Object. The first example is a blobby object [39]. This type of model defines the implicit
function as a density field generated from a point skeleton. The implicit surface is a level set of
that field. In such a formulation, point sources can be combined either additively or subtractively
in order to produce smooth blends.

We chose this implicit model because this is a common technique to construct implicit surface
models in computer graphics modeling systems.

The test object is a spherical shape with a cavity on top. It was constructed using a skeleton
with two points consisting of one strong positive source and one weaker negative source.

Figure 14 shows a polygonal approximation of this object. The mesh contains 2351 triangles.

Figure 14: polygonal approximation of blobby object

Note that the density of the mesh increases mostly around the rim of the crater, where the
subtracted material blend occurs. This area contains the sharpest variations in surface curvature.

Figure 15 shows a close up view of a portion of the triangle mesh with high polygon density.

Hypertexture Object. The second example is a hypertexture object [40]. This type of model
is a procedural implicit shape, defined by functional composition of a base density function with
density modulation functions. In the example we have a “noisy sphere” of radius 1, generated from
a spherical field modulated band-limited noise.

Figure 16 shows the polygonal approximation produced by our algorithm. The initial sampling
employed a [3 × 3 × 3] grid enclosing the object. Figure 17 shows a Gouraud shaded rendering of
the object. The mesh has 1058 triangles and was computed in 0.9 seconds in a SGI Indigo R4000
workstation.

7 Conclusions

We have presented two new adaptive polygonization methods: one for parametric surfaces and one
for implicit surfaces. Both methods are based on the same general principles: edge coherence; and
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Figure 15: Detail of an area with high surface curvature

Figure 16: Polygonal approximation of the “Noisy Sphere”.

separation of sampling and structuring,
The method for parametric surfaces combines recursive simplicial subdivision of the domain with

point sampling along the corresponding curves on the surface. Cracks in the polygonal mesh are
avoided by determining the optimal sampling rate along the edges of a cell before subdividing it.
This method is suitable for surfaces with low variations, such as bicubic patches, as well as for
surfaces with high variations, such as height fields. This polygonization method is also suitable for
computing trimmed surfaces: just sample the trimming curves as described in Section 5.1 and start
from a triangulation of the trimmed domain constrained to this sampling.

The method for implicit surfaces is a simplification of the method introduced by one of the
authors [20]. The main difference is that the original method employed an extrinsic 3D adaptation,
making the implementation more complex and less efficient. In the new method, we decompose the
problem in two subproblems, so that most of the computation can be done intrinsically (2D). This
makes the implementation simpler and more efficient. A disadvantage of this method is that to
ensure a correct solution, the resolution of the sampling grid must be fine enough to discriminate
the topology of each connected component of the object. In practice, a very coarse sampling grid
suffices for most shapes of interest.
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Figure 17: Gouraud shaded “Noisy Sphere”.

A similar polygonization method for implicit surfaces was developed independently by Thad
Beier of Pacific Data Images – PDI, [41] and by Brian Wyvill [42].

We are currently working on a unified adaptive polygonization method based on edge coherence
which computes a hierarchical polygonization, and handles both parametric and implicit surfaces in
the same way.
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