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Abstract

This work investigates the use of smooth neural networks
for modeling dynamic variations of implicit surfaces un-
der the level set equation (LSE). For this, it extends the
representation of neural implicit surfaces to the space-time
R3⇥R, which opens up mechanisms for continuous geo-
metric transformations. Examples include evolving an ini-
tial surface towards general vector fields, smoothing and
sharpening using the mean curvature equation, and inter-
polations of initial conditions.

The network training considers two constraints. A data
term is responsible for fitting the initial condition to the cor-
responding time instant, usually R3⇥{0}. Then, a LSE term
forces the network to approximate the underlying geometric
evolution given by the LSE, without any supervision. The
network can also be initialized based on previously trained
initial conditions resulting in faster convergence when com-
pared with the standard approach.

1. Introduction
A neural implicit function g : R3! R is a smooth neu-

ral network that represents an implicit function. Since g is
smooth, objects from the differential geometry of its regular
level sets can be used in closed form [35, 26].

This work investigates the extension of the domain of
neural implicit functions to the space-time R3⇥R, encod-
ing the evolution of the function g as a higher-dimensional
function f : R3⇥R ! R. The resulting animation is gov-
erned by a PDE, the level set equation (LSE) @f

@t =v krfk,
which encodes the propagation of the level sets St of f(·, t)
towards their normals with speed v. The choice of the func-
tion v depends on the underlying geometric model. LSE is
an important tool for geometry processing applications.

We propose to use a neural network f : R3⇥R! R to
represent the above level set function. For this, we train f to
learn the evolution St of an initial surface S under a given
LSE. Accordingly, we add the constraint f=g on R3⇥{0},
to the LSE. If g is the signed distance function (SDF) of
S, a solution f of this problem encodes an animation of S.
Our method is the first neural approach in geometry pro-

cessing, that does not consider numerical approximations
of the LSE solution during sampling and does not discretize
the LSE in the loss function.

Our strategy has two steps to train f . First, a sample
{pi, g(pi)} enables us to train the initial condition f =g on
R3⇥{0}. Second, an LSE constraint is used to fit f into
a solution of the LSE in R3⇥R. This term does not need
any supervision, i.e. it does not consider samples of f . The
constraint only uses samples in the form (pi, ti). The only
requirement of our method is that f must be smooth. Given
this, our main contributions can be summarized as follows:

• Extension of neural implicit surfaces to space-time
without the use of numerical/discrete approximations;

• Development of a neural framework to train solutions
of an LSE using only its analytical expression (Sec 4);

• The method is flexible enough to be used in a variety of
applications, such as surface motion by vector fields,
smoothing, sharpening, and interpolation (Sec 6);

• We propose a novel network initialization based on
previously trained initial conditions (Sec 4.4).

2. Related Works

Many problems, such as shape correspondence, topology
changes, and animation of deformable objects, can be posed
using implicit surfaces [17, 32, 3, 4, 14, 13]. Studying their
shape properties through differential geometry leads to a
framework for intrinsic operations. An example is smooth-
ing a surface using the mean curvature equation, an impor-
tant PDE in geometry processing [6, 5, 15, 13]. Problems in
this topic rely on computing derivativess – a hard task when
dealing with meshes [7, 11, 12]. A practical neural implicit
approach would allow us to compute such objects in closed
form, and it is the objective of this work.

Several works showed that modeling surfaces as level
sets of neural networks result in a compact representation
[29, 25, 18, 31, 26, 10]. Most of them fit a network into data.



In the SDF case, a regularizer term forces the network to
satisfy the Eikonal equation. The robustness of those ap-
proaches is our motivation to study the evolution of neural
implicit surfaces using the level set equation [28, 27], a PDE
widely used in geometry processing [13, 2, 21, 30, 23, 34].

NFGP [35] and NIE [24] are recent neural approaches to
evolve implicit surfaces. Both solve the problem in discrete
time steps, differently from our continuous approach. They
use a network g� to fit an initial function g. Then, � is
updated at each time step creating a sequence of networks
g�i :R3!R. This is similar to the Euler and Runge-Kutta
methods but, instead of fitting the solution to a grid, they
use a network. In contrast, our method does not discretize
time, learning the solution in a continuous interval using a
single network with a domain in R3 ⇥ R.

NIE is the only approach that evolves g� using the mean
curvature equation @f

@t = krfk. To update �, it uses a
finite difference scheme to approximate the discrete solu-
tions. They compute the mean curvature  using a discrete
Laplacian, which is problematic since it depends on ap-
proximating the level sets by meshes using marching cubes.
Also, this operator does not preserve the Laplacian natural
properties – the no free lunch scenario [33]. In contrast, our
approach uses the network high-order derivatives to evalu-
ate the LSE analytically. For example, we compute the cur-
vature using the divergence of rf

krfk . Moreover, NIE cannot
consider multiple initial conditions as our approach does.

Recently, there has been a growing interest by the phys-
ical simulation community in solving PDEs using neu-
ral networks. Physically informed neural networks (PINNs)
are established approaches in this context. Unlike our pro-
posal, this method [16] relies on measurements of the PDE
solution at intermediate times. PINNs are extensively eval-
uated in surveys [20, 8]. Karniadakis et al. [20] reviews
inverse problems, which try to infer the PDE parameters
based on supervised data. This context differs from ours
since we do not address the inverse problem, they also do
not consider implicit surface evolution using the LSE, and
we do not rely on supervised data of the evolution.

Cuomo et al. [8] surveys a broader range of problems
based on the PDE type. We focus on the evolution of im-
plicit surfaces using the LSE, which is a geometric time-
dependent PDE not explored in their review [8, Sec 3.2.2].
Thus, to the best of our knowledge, there is no PINN-based
approach to solve the LSE for implicit surface evolution.

Our proposal seeks to bridge this gap by leveraging
the representation capacity of (sinusoidal coord-based) net-
works to solve the above geometric problem without any
measurements of the PDE solution at intermediate times;
i.e., we need supervision only on the initial surfaces. This
can potentially enable new applications in computer graph-
ics, computer-aided design, and computational geometry.

Regarding the interpolation problem, Liu et al. [22] pro-
pose the Lipschitz MLP, which regularizes a neural network
by penalizing the upper bound of its Lipschitz constant.
We use a specific PDE to interpolate SDFs, resulting in
smoother and more natural transitions between shapes (see
Sec 6.3). Moreover, our method manages to use smaller
architectures by considering sinusoidal MLPs.

3. Background and conceptualization
3.1. Implicit surfaces

The level set g�1(0) of a smooth function g :R3!R is a
(regular) surface if rg 6= 0 in g�1(0). Conversely, given a
surface S, there is a function g having it as its zero-level set.
Thus, g may be reconstructed from a sample of S. For this,
we parametrize g using a neural network. SIREN [31] and
IGR [18] are examples of such networks.

To compute the parameters of g such that g�1(0) ⇡ S, it
is common to consider the Eikonal problem:

krgk = 1 subject to g = 0 on S. (1)

Which asks for g to be the SDF of a set containing S. We
can derive from Eq (1) that

⌦
rg,N

↵
= 1 on S, which im-

plies that rg must be aligned with the normals of S.

We are interested in using neural networks to evolve
S. The level sets of g could be used, but they do not al-
low intersections between surfaces at different instants. To
avoid this, we extend the domain of the implicit function to
R3 ⇥R, where the parameter t 2 R controls the animation.

3.2. Evolving implicit surfaces
We use a function f : R3 ⇥ R ! R to define the above

extension. For evolving the level sets of g we require f = g
in R3 ⇥ {0} and the resulting evolution is given by

St = f�1
t (0) = {p 2 R3| f(p, t) = 0} (2)

We are assuming that f is negative in the interior of St

and its normal vectors are given by N = rf
krfk . Moreover,

rf denotes the gradient of f with respect to the space R3.
The time t allows continuous navigation in St and rep-

resents a transformation S0 ! St of the initial surface S0.
Moreover, for t0, t1 2 R, the function f provides a smooth
deformation between St0 and St1 . These surfaces can con-
tain singularities as their topologies may change over time.
Hart [19] has studied this phenomenon using Morse theory.

Such an Eulerian approach is usually explored in geome-
try processing by storing f on a 4D grid [13]. Here, we take
an analytical formulation by parametrizing f by a (coord-
based) network. Such an approach has several advantages.
First, automatic differentiation provides us the analytical
derivatives of f , which may be used at the loss function.



We can also compute the normals and curvature measures
of St in closed form [26]. Additionally, neural networks are
compact representations for implicit functions, guaranteed
by the universal approximation theorem [9]. Storing f with
precision in a 4D grid could be an unfeasible task.

3.3. Level set equation
Encoding the surface evolution St by the time-dependent

function f results in a PDE – the level set equation (LSE).
We describe it below.

Let g : R3! R be the SDF of the initial surface S. A
function f : R3⇥R!R encodes the evolution St if f = g
on R3⇥{0}, and for each point p, the function f is constant
along its path ↵(t), i.e. f

�
↵(t), t

�
= c iff g(p) = c. Thus,

deriving the function f
�
↵(t), t

�
we obtain

@f

@t

�
↵(t), t

�
+
⌦
rf

�
↵(t), t

�
,↵0(t)

↵
= 0. (3)

The derivative ↵0(t) is a vector field along the path ↵(t).
As Eq (3) holds for each point p, we can drop its path

↵ and use only ↵0, which can be seen as a time-dependent
vector field V (p, t) = ↵0(t). Then, the function f encoding
the animation St is a solution of the LSE:

8
<

:

@f

@t
+

⌦
rf, V

↵
= 0 in R3 ⇥ (a, b),

f = g on R3 ⇥ {t = 0}.
(4)

The time interval (a, b) contains t = 0 and controls the
evolution St. A solution f of Eq (4) implicitly encodes the
integration of V . Thus, defining a family of vector fields is
a way to animate a given surface using the LSE.

Observe that in the same sense that we considered a neu-
ral implicit function as a solution of Eq (1), we assume that
the function f is a solution of @f

@t +
⌦
rf, V

↵
= 0 subject to

f = g on R3 ⇥ {0}. Sec 5 presents examples of LSEs.

4. Method
We propose representing a surface evolution by a (coord-

based) neural network f✓ : R3⇥R ! R. Given an LSE with
initial conditions, this section defines a machine learning
framework, consisting of a loss functional, sampling strate-
gies, and a network initialization, to train f✓ to approximate
a solution to the LSE problem.

Let gi : R3 ! R be the SDFs of n surfaces Si. We train
f✓ by forcing it to approximate a solution a neural LSE:

8
<

:
F :=

@f✓
@t

+
⌦
rf✓, V

↵
= 0 in R3 ⇥ (a, b),

f✓ = gi on R3 ⇥ {ti}.
(5)

We employed the notation F to represent the LSE for
brevity. The untrained network f✓ must encode the move-
ment ruled by the vector field V . (a, b) can be used to con-
trol the resulting neural animation St of S.

4.1. Loss functional
We use Eq (5) to define a loss function to train f✓.

L(✓) =
Z

R3⇥(a,b)

��F
��dpdt

| {z }
LLSE(✓)

+
nX

i=1

Z

R3⇥{ti}

��f✓ � gi
��dp

| {z }
Ldata(✓)

. (6)

The LSE constraint LLSE forces the network f✓ to satisfy
F = 0 and works like a regularization of f✓ requiring it
to follow the underlying phenomenon. The data constraint
Ldata asks for f✓ to satisfies f✓ = gi on R3 ⇥ {ti}.

4.2. Sampling
To approximate a solution f✓ of Eq (5), we seek a mini-

mum ✓ of the loss function L using the stochastic gradient
descent. For this, we enforce L = LLSE +Ldata with a sam-
pling in R3 ⇥ (a, b) and another in

Sn
i=1 R3 ⇥ {ti}.

Sampling space-time points
During training, we sample minibatches of l1 2 N space-
time points (pj , tj) 2 R3 ⇥ (a, b) randomly. Then, LLSE is
enforced in (pj , tj), yielding the approximation:

gLLSE(✓) =
1

l1

l1X

j=1

|F(pj , tj)|

Monte Carlo integration ensures that the approximation of
LLSE gets better as the size l1 of the sampling grows. Note
that LLSE does not need any data supervision.

Sampling initial conditions
The data constraint Ldata forces f✓ to fit the input dataset,
which we consider to be the SDFs gi of n surfaces Si.

We use Eq (1) to define Ldata =
P

Li, with Li managing
the restriction gi = f✓ on R3 ⇥ {ti}.

Li=

Z

R3⇥ti

���1�
��rf✓

��
���dp

| {z }
LEikonal

+

Z

R3⇥ti

��f✓�gi
��dp

| {z }
LDirichlet

+

Z

Si

��1�
⌦
rf✓, Ni

↵��dSi

| {z }
LNeumann

.

Where LDirichlet asks for f✓ to fit gi at time ti, LNeumann re-
quires the alignment between rf✓ and the normals of Si,
and LEikonal is the Eikonal regularization. During training,
these constraints are discretized, as in the PDE constraint
case. Then, we sample minibatches with l2 on-surface
points (gi = 0) and l3 off-surface points (gi 6= 0).

In practice, we use two kinds of initial conditions. First,
neural networks gi fit the SDFs of Si, resulting in faster
training since we have, for each point pi, the values gi(pi)
and rgi given by the evaluation of gi and its derivative at pi.
Second, we consider point clouds {pj , Nj}i sampled from
Si, where we have to approximate the SDF of Si [26].



During training, we sample minibatches of size l1+l2+l3
to feed L. li are the numbers of space-time, on-surface, and
off-surface points. The experiments shown good results us-
ing that l1, l2, l3 have 50%, 25%, 25% of the minibatch size.
The supplementary materials give experiments varying li.

4.3. Neural network architecture
We consider the neural network to be a sinusoidal MLP

f✓(p) = Wd+1 � fd � · · · � f1(p) + bd+1, with d hidden
layers fi(pi) = sin(Wipi+bi), where Wi 2 RNi+1⇥Ni are
the weight matrices, and bi2RNi+1 are the biases. The sine
is applied at each coordinate of Wipi + bi. ✓ consists of the
union of the coefficients of Wi and bi. The integer d is the
depth of f✓ and the dimensions Ni are the layers widths.

The network f✓ is smooth, and we can compute its
derivatives using automatic differentiation. Therefore, we
train f✓ using the loss function L in Eq (6).

4.4. Network initialization
We introduce a novel initialization of f✓ : R3 ⇥ R ! R

based on a previously trained network g� : R3 ! R. This
initialization of ✓ using � results in faster training compared
with the standard definitions [31] (see Sec 6.4).

Assume that the training of f✓ is subject to f✓ = g�
on R3 ⇥ {0}. Then, we define ✓ in terms of � such that
f✓(p, t) = g�(p) for all t, i.e. f✓ will be constant and equal
to g� along the time. This would allow us to train f closer
to a solution of the underlying LSE model.

For this, we suppose that f✓ is wider than g� and that
their depths are equal to d. Specifically, let Bi 2 RNi+1⇥Ni ,
bi 2 RNi+1 be the trained weight matrices and biases of g�,
and Ai 2 RMi+1⇥Mi , ai 2 RMi+1 be the untrained weight
matrices and biases of f✓. Since f✓ is wider than g�, i.e.
Ni  Mi, we can define Ai, bi using

A1 =
⇣

B1 0
Fp Ft

⌘
, Ai =

�
Bi 0
0 0

�
for i = 2, . . . , d,

Ad+1 = (Bd+1 L ) , ai =
�
bi
0

�
for i = 1, . . . , d+ 1.

Thus, f✓(p, t) = g(p) for all t, see supp. material for the
details. Fp, Ft project the input (p, t) in the dictionary
sin (Fpp+ Ftt), and are initialized using the standard ap-
proach. Note that these sines are not used in the first training
step, but as it advances, the new hidden weights combine
them improving the training (see Sec 6.4).

5. Examples
Here, we present examples of neural implicit evolution

using LSE. Sec 5.1 shows examples using time-independent
vector fields. Sec 5.2 considers the mean curvature equa-
tion, which is intrinsically related to the surface and re-
sults in smoothing/sharpening applications for implicit neu-
ral surfaces. Sec 5.3 investigates interpolations between im-
plicit neural surfaces using an LSE.

Recently, these problems have been addressed by differ-
ent neural methods [24, 35, 22]. Comparisons are made in
Sec 6. Hereafter, we give each application’s conceptualiza-
tion and corresponding loss function.

5.1. Time-independent vector fields
Moving a surface S towards a vector field V : R3 ! R3

results in a simple LSE. Specifically, let g be the SDF of S.
Since V does not change over time, it may be defined and
customized beforehand. For example, sources, sinks, sad-
dles, and constant vectors may be used to generate vector
fields based on specific applications.

We train a neural network f✓ : R3⇥R ! R to implicitly
encode the evolution of S by V using the resulting LSE:

8
<

:

@f✓
@t

� v krf✓k = 0 in R3 ⇥ (a, b),

f✓ = g on R3 ⇥ {0}.
(7)

Here v denotes the size of the normal component of V , i.e.
v(p, t) =

⌦
V (p), Nt(p)

↵
. The minus in Eq (7) is because

we need the inverse of the resulting flow to compose with g.
Sec 6.1 gives two experiments using time-independent

vector fields as a proof of concept. Other examples are pre-
sented in the video supplementary material.

5.2. The mean curvature equation
The mean curvature equation evolves the level sets with

velocity given by the negative of their mean curvature, re-
sulting in a smoothing along the time [6, 1].

Let V (p, t) = �(p, t)N(p, t) be the mean curvature
vector, where N is the normal field of the level sets and
 = divN is the mean curvature; div is the divergence
operator. Replacing V in Eq (5) results in:

8
<

:

@f

@t
� ↵ krfk ✓ = 0 in R3 ⇥ (a, b),

f = g on R3 ⇥ {t = 0}.
(8)

Intuitively, the zero-level set moves toward the mean curva-
ture vector �N , contracting regions with positive curva-
ture and expanding regions with negative curvature. Thus,
such procedure smooths (sharpens) the surface if t > 0
(t < 0). ↵ controls the level set evolution, which has re-
lations with minimal surfaces (Sec 1 of supp. material).

Analogous to Eq (5), we define LLSE + Ldata to fit a so-
lution of Eq (8) using F := @f

@t � ↵ krfk ✓. Sec 6.2
presents smoothing and sharpening using this technique.

5.3. Interpolation between implicit surfaces
Let gi be the SDFs of two surfaces Si. We present a LSE

approach to interpolate gi. A vector field V for Eq (5), such
that its solution interpolates between Si, has the form:

V (p, t) = �
�
g2(p)� f(p, t)

� rf(t, p)

krf(t, p)k , (9)



with f(p, 0) = g1(p). Note that the evolution towards V
forces each c-level set of g1 to match the c-level set of g2.
The resulting LSE is given by substituting Eq (9) in Eq (5)

8
<

:

@f

@t
� krfk (g2 � f) = 0 in R3 ⇥ R,

f = gi on R3 ⇥ {ti}.
(10)

A solution f of Eq (10) will locally inflate S1 if inside S2,
and deflate it if outside so that S1 will always try to fit into
S2 [13]. Again, we define a loss function LLSE +Ldata to fit
a solution of Eq (10) using F := @f

@t � krfk (g2 � f).
Theoretically, we could use the mean curvature equation

to minimize deformations along the interpolation. This LSE
has the property of minimizing area distortions of the result-
ing evolution; see Sec 1 of the supplementary material.

6. Experiments
Here, we present the experiments of the examples given

in Sec 5. See the supplementary material for an ablation
study of the training, sampling, and initialization.

6.1. Deformation driven by vector fields
We use the the definitions in Sec 5.1 to train an animation

based on vector fields spatially related to the initial surface.
First, consider the twist V (x, y, z) = y(�z, 0, x) of R3

along the y-axis. Substituting it in Eq (5) results in a level
set equation, which we use to derive a loss function.

Let g be the SDF of the Armadillo and f✓ be a network
with 2 hidden layers fi : R256 ! R256. We trained f✓ dur-
ing 48000 epochs using minibatches of 25000 on-surface
points (g = 0), 25000 off-surface points (g 6= 0), and 8000
points in R3 ⇥ [�1, 1]. Fig 1 shows 3 reconstructions of the
zero-level sets of f✓ at times ti = 0, 0.25, 0.5.

Figure 1. Evolving the level sets of the Armadillo’s SDF using the
vector field that represents a twist of R3 along the y-axis.

Although we do not provide data in R3⇥{t 6= 0}, the
solution is well approximated (see Fig 1). The vertical axis
is the y-axis, and the origin of R3 is at the ground.

For the next experiment, let g be the SDF of the Spot
(Fig 2, center). Define V = V1 � V2 as the sum of a

source V1 and a sink �V2, with Vi(p) = e�
|p�pi|

2

0.18 (p� pi).

The points p1, and p2 are the centers of Spot’s body and
head. Again, we use V to derive a loss function to train f✓.
We parameterize f✓ with one hidden layer fi :R128!R128

and train it for 46000 epochs. As expected, it reduces the
Spot’s head while it increases the body size, see Fig 2.

Figure 2. Evolving the zero-level sets of a network according to a
vector field with a source and a sink. We set the SDF of the Spot as
the initial condition at t = 0 (middle). The sink/source are inside
the head/body of the Spot.

Table 1 shows that the above networks are close to sat-
isfying the LSE problems. We compare f✓(·, 0) with the
initial condition g and measure how close f✓ is from satis-
fying F = 0. For this we use the following measures: 1)
The absolute difference |f✓(·, 0)� g| in R3 ⇥ {0}; 2) The
evaluation of f✓ in |F| in R3 ⇥R. We use a sample of 1000
points in R3 ⇥ {0} and R3 ⇥R, not included in the training
process, to evaluate the mean/maximum of each measure.

Vector
field

on-surface
constraint

off-surface
constraint

PDE
constraint

mean max mean max mean max
twist 0.0008 0.003 0.002 0.028 1e-5 0.0004

source-sink 0.0009 0.005 0.001 0.015 2.7e-6 0.0005
Table 1. Comparisons between the ground truth initial conditions
at t = 0 and the measures of how close the trained networks are to
satisfy the underlying LSEs.

6.2. The mean curvature equation
The next set of experiments seek to solve the mean cur-

vature equation. First, we consider simple initial conditions
such as the cube and the dumbbell. Then we use the intrin-
sic properties of this LSE to provide smoothing/sharpening
of detailed surfaces.

6.2.1 Simple initial conditions for validation

Let g be the SDF of the cube, and f✓ : R3 ⇥ R ! R be
a network with 3 hidden layers fi : R256 ! R256. We
set ↵ = 0.1 and optimized f✓ for 8000 epochs using the
loss function resulting from Eq (8). We used an oriented
point cloud of size 40000, sampled from the cube. Dur-
ing training, we consider minibatches of 5000 on-surface
points, 5000 off-surface points, and 10000 in R3 ⇥ [�1, 1].

Fig 3 shows the level sets of f✓ at t = i
5 , i = 0, . . . , 5.

As expected, regions with positive mean curvature, such as
the cube corners, contract. This LSE evolves the surface to-
ward the normals times the negative of the mean curvature.



Therefore, the cube will at some instant of time collapse to
a point, but right before it will be very close to a sphere [6].

Figure 3. Mean curvature equation of cube surface.

The dumbbell is a classical example. Let g be its SDF
and f✓ be a network with 2 layers fi : R256 ! R256. We
set ↵ = 0.05 and sample a point cloud of size 80000 from
the dumbbell. The training took 2800 epochs using mini-
batches of 5000 on-surface points, 5000 off-surface points,
and 10000 points in R3 ⇥ [�1, 1].

Fig 4 shows the level sets of f✓ at times ti = i
10 for

i = 0, . . . , 7. As expected, since the neck region has higher
mean curvature, it pinches off first creating two connected
components. Later, each component collapses to a point,
becoming small spheres right before that. The resulting
flow has critical points in different instances of time.

Figure 4. Mean curvature equation of Dumbbell surface.

6.2.2 Smoothing and sharpening

The mean curvature equation evolves the level sets by con-
tracting (expanding) regions with positive (negative) mean
curvature. As a consequence, its solution smooths (sharp-
ens) the level sets when t > 0 (t < 0).

Let g be the SDF of the Armadillo, and f✓ be a network
with 2 hidden layers fi : R256 ! R256. We set ↵ = 0.001
in Eq (8). The network f✓ was trained during 33000 epochs
using an oriented point cloud of size 80000. During train-
ing, we used minibatches of 5000 on-surface points, 5000
off-surface points, and 10000 in R3 ⇥ [�1, 1].

Fig 5 presents three reconstructions of the zero-level sets
of f✓ at times t = 0, 0.1, 0.2. As expected the surface of
the Armadillo was properly reconstructed at t = 0 and as
time progressed it became smoother. Regions with positive
mean curvature, such as the fingers, contracted.

For the sharpening we reconstruct the zero-level sets at
t = 0,�0.1,�0.2 (see Fig 6). As expected, regions with
positive curvature have expanded, resulting in an enhance-
ment of the surface geometrical features.

Figure 5. Armadillo smoothing using the mean curvature equation.

Figure 6. Using the mean curvature equation to enhance the geo-
metrical details of the Armadillo surface.

Numerical evaluation

Table 2 shows that the above networks are close to satis-
fying Eq (8). We compare the networks at t = 0 with the
initial surfaces. We also measure how close the networks
are to satisfying the LSE. We used a sample of 1000 points
in R3⇥{0} and R3⇥R, not included in the training process,
to evaluate the mean and maximum values of each measure.

Model
on-surface
constraint

off-surface
constraint

PDE
constraint

mean max mean max mean max
Cube 0.0006 0.007 0.0013 0.024 0.0015 0.009

Dumbbell 0.0003 0.002 0.0010 0.013 0.0009 0.017
Armadillo 0.0008 0.004 0.0022 0.016 0.0019 0.013

Table 2. Quantitative evaluation of our method in the problem of
approximating solutions of the mean curvature equation.

Comparisons

We compare our technique with NFGP [35] and NIE [24]
for smoothing and sharpening of neural implicit surfaces.

NFGP evolves a network g✓ :R3!R such that the level
set of the resulting network g� smooths/sharpens g�1

✓ (0).



The training optimizes, (���✓)2, the difference between
the mean curvatures of the level sets of g� and g✓. Then,
using � < 1 (� > 1), it would force a smoothing (sharpen-
ing) of the initial surface. However, NFGP trains a network
g� for each �, thus, it cannot represent a continuous evolu-
tion along time. In contrast, our framework directly evolves
over time using a single network. Although the NFGP ap-
proach does not use the mean curvature equation model, we
can still perform a qualitative analysis as a means of com-
parison since a numerical comparison is not feasible. Fig 7
shows this comparison for sharpening. The artifacts in the
Armadillo’s ears are probably due to the inconsistencies in
the loss function of NFGP which asks for (g��g✓)2 and
(� � �✓)2, thus the level sets would try to evolve but
(g��g✓)2 forces it to be constant.

Figure 7. Sharpening comparison of our approach with
NFGP [35]. We use the same Armadillos in Fig 6, and � = 2, 2.5
for the NFGP. The experiments used the same initial condition.
Notice that NFGP may produce artifacts while sharpening, as can
be seen in the Armadillo’s ears.

Figure 8. Smoothing comparison. Line 1 repeats Fig 5. Line 2
presents steps 4 and 7 of smoothing using NIE [24]. Line 3 shows
the results using NFGP [35] with � = 0.95, 0.8. All experiments
used the same initial condition. As expected, our approach is com-
parable with NIE because they are based on the mean curvature
equation. While the overall result of NFGP is smoothing, it may
produce artifacts, as can be noticed in the fingers.

We also compare with NIE [24]. Given a time step �t,
it fits the solution of Eq (8) at times ti = i�t using the
approximation fti+1 = fti � �t↵

⌦
rfti ,✓N

↵
. Thus, for

a network g�i ⇡ fti , NIE trains the next state g�i+1 by
minimizing (g�i+1 � fti+1)

2. Moreover, a discrete Lapla-
cian estimates ✓N at the vertices of a mesh approximating
g�1
�i

(0). The resulting networks g�i have the domain in R3

while we use a single network with a domain in R3 ⇥ R.
Fig 8 presents two smoothings of the Armadillo using

our method, NIE, and NFGP. Line 1 repeats the results of
Fig 5. Line 2 shows results for NIE, considering 4 and 7
steps with �t = 1. Line 3 presents the results using NFGP
to train a network with � = 0.95, 0.8 defined empirically.
To present a fair comparison, we considered the initial net-
work to be f✓(·, 0); f✓ is the network from our experiment.
We used the procedure in Sec 3 of the supplementary mate-
rial to extract f✓(·, 0) from f✓.

6.3. Interpolation between implicit surfaces
Suppose gi are the SDFs of the Bob and Spot (Fig 9, left-

right) and that f✓ has 1 hidden layer fi : R128 ! R128. We
train f✓ using LLSE + Ldata, as described in Sec 5.3. Line 1
in Fig 9 shows the reconstructions of the level sets.

Figure 9. Interpolation between Bob and Spot. Line 1 shows the
result using our method, and line 2 the Lipschitz MLP. Notice that
our method results in smoother transitions between the images.

We compare our method with Lipschitz MLP [22] which
considers the tanh activation. We use a Lipschitz MLP with
5 hidden layers of 256 neurons. Each layer is followed by
a Lipschitz regularization. The network was trained during
100000 epochs. See the resulting interpolation in Line 2 of
Fig 9. Our network is significantly smaller than the Lips-
chitz MLP but results in natural interpolation. This is due
to the high representation capacity of sinusoidal MLPs.

Fig 10 presents the reconstructions of interpolation be-
tween the Witch and Falcon (from the Thingi10K dataset
[36]). The first line is the result of our method using a
network with 2 hidden layers R128 ! R128 trained during
20000 epochs. For the Lipschitz MLP, we have to consider
a larger network with 5 hidden layers of 512 neurons and
train it for 100000 epochs. Even with the added capacity
and training iterations, the Lipschitz MLP cannot approxi-
mate the initial conditions properly.



Figure 10. Interpolation between Witch and Falcon. Line 1 (20000
epochs) is the result of our method and Line 2 (100000 epochs)
considers the Lipschitz MLP network. Notice that our approach
results in a better approximation of the initial conditions, as can be
seen in the Witch’s hood and sword, and Falcon’s beak and talons.

6.4. Initialization based on trained networks
Let g� : R3 ! R be a trained network with 2 hidden

layers gi : R256 ! R256 fitting the SDF of the Bunny.
Let f✓ : R3 ⇥ R ! R be a network with 2 hidden layers
fi : R256 ! R256. We train f✓ to approximate a solution of
the mean curvature equation subject to f✓ = g� on R3⇥{0}.

Here we use the scheme of Sec 4.4 to define ✓ in terms
of � such that f✓(p, t) = g�(p). We compare it with the
standard initialization of sinusoidal MLPs [31].

Figure 11. Network initialization comparison. Line 1 shows the
results of using the initialization is given in [31] and Line 2 con-
siders the proposed initialization. Notice how the new network
initialization results in a model that can represent higher frequen-
cies, as shown by the increased surface details in Line 2.

Fig 11 gives qualitative comparisons between the initial-
izations, after training f✓ during 500 epochs. We empiri-
cally observed that our approach speeds up learning. For
example, Line 1 shows the bunnies at t = �0.2, 0.0, 0.6.

Line 2 gives the analogous results using our initialization
which results in faster convergence. Note the preserva-
tion of surface details using the proposed initialization at
t = �0.2, 0.0 (Line 2), compared to the standard initial-
ization in Line 1. Fig 12 shows the plots of the constraints
considering 1500 epochs. Note that, using our scheme, the
training starts closer to a minimum of the loss function.

Figure 12. Loss function comparisons. Column 1 shows the
plots of the LSE/data constraint using the standard initialization.
Column 2 shows the corresponding plots applying our initializa-
tion scheme. The horizontal axis represents the number of epochs.

7. Conclusions and Future Work
We introduced a framework to explore the differentiable

properties of smooth networks in the problem of evolving
level sets of neural SDFs. For this, we extended their do-
main to space-time which opens up possibilities to control
geometric animation and modeling using LSEs.

The method allows evolving neural implicit surfaces un-
der LSEs without the use of additional data, only the initial
conditions are used. Note that other methods compute an
approximation of the solution using numerical simulations
and then fit it into the neural network. However, our frame-
work was capable of learning the animation only consider-
ing the LSE constraint. This is powerful because the mod-
els are expressed in compact LSEs that are used to define
constraints. This approach enables learning the correspond-
ing animations without any supervision. Most techniques
in geometry processing use differential equations to model
various kinds of phenomena which, in general, are written
in terms of their energy formulation.

The resulting networks are smooth approximations of
LSE solutions. Traditional numerical solutions are discrete,
making non-trivial the task of introducing more conditions.
This is a quite simple task in our method, however. We
believe that the development of such methods in graphics
would enable the community to use the robustness of classi-
cal continuous theories without the need for discretizations.
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1. Minimal surfaces
The evolution of a surface S governed by the mean cur-

vature equation (MCE) leads to a family of surfaces that

reduce their area over time. Let f :R3⇥R!R be a solution

of MCE and St be its corresponding surface evolution.

8
<

:

@f

@t
� ↵ krfk  = 0 in R3 ⇥ (a, b),

f = g on R3 ⇥ {t = 0}.
(1)

The area of St can be measured using Area(St) =
R
St

dSt,

where dSt is the area form of St. It can be proved that the

first variation of area of the family St is given by

d

dt
Area(St)

���
t=0

= �
Z

S0

2dS0, (2)

The proof can be found in [1, Sec. 3.5], [2, Cor. 6.2]. Thus,

if the mean curvature satisfies  6= 0, the area of St initially

decreases because its derivatives are negative at t = 0.

A surface St0 is critical if
d
dtArea(St)

���
t=t0

= 0, that is, if

 is constant equal to zero. This surface is called minimal.

Examples of minimal surfaces include the plane, catenoids,

helicoids, Enneper surface, Costa’s minimal surfaces, etc.

We can fix a region of the initial surface S in the MCE.

If S has a boundary curve, fixing it during the evolution

leads to a surface of minimal area. This problem is related

to the physical shapes of soap films at equilibrium under the

surface tension [4].

2. Network initialization
Proposition 2.1. Let g� : R3 ! R and f✓ : R3⇥R ! R be

networks with depth d. If f✓ is wider than g�, we can define

✓ in terms of � such that f✓(p, t) = g�(p) for all (p, t).

Proof. Recall that g�(p) = Bd+1 � gd � · · · � g1(p) + bd+1,

where gi(pi) = sin(Bipi+bi) is the i-layer, Bi is a matrix

in RNi+1⇥Ni , and bi 2 RNi+1 is the i-bias. Analogously,

f✓(p, t) = Ad+1 � fd � · · · � f1(p, t)+ ad+1, with its i-layer

fi : RMi ! RMi+1 given by fi(pi) = sin(Aipi + ai).

By hypothesis, f✓, and g� have the same depth d, and the

width of each layer of g� is less than or equal to the width of

the respective layer of f✓, i.e., Ni  Mi. Thus, we define

the hidden layers of f✓ using Ai =
�
Bi 0
0 0

�
, ai =

�
bi
0

�
.

Evaluating (p, c) 2 RNi ⇥ RMi�Ni in fi results in

fi(p, c) = sin
��

Bi 0
0 0

�
( pc ) +

�
bi
0

��
=

�
gi(p)
0

�
.

Thus, defining A1 =
⇣

B1 0
Fp Ft

⌘
, a1 =

�
b1
0

�
, we obtain the

desired result because

f1(p, c) = sin
⇣⇣

B1 0
Fp Ft

⌘
( pt ) +

�
bi
0

�⌘
=

⇣
g1(p)

Fpc+Ftt

⌘
.

In other words, the neurons gi(p) of the network g� remain

intact along the layers.

The blocks Fp and Ft project the entry points (p, t) to

a dictionary of sines waves, which are not considered in

the following layers because they are fed to zeros blocks.

However, new hidden weights can activate such features as

the training advances. In Sec 4.4, we present experiments

varying the width of f✓ to explore such initialization in the

problem of solving the MCE.

To reproduce Prop 2.1 with f✓ deeper than g�, we must

be able to add a hidden layer f(pi) = sin(Ap + a) to f✓
which do not exist in g�. Thus, it would be desirable to ini-

tialize f as an identity layer. Following the above approach,

we could define A = I and a = 0 obtaining f(p) = sin(p),
however, in general, sin(p) 6= p. This can be fixed using

that sin(p) ⇡ p when kpk is close to zero. Therefore, we

define A = �I , with � being a small number, and multiply

the resulting output of f by
1
� to keep it close to p.

3. Extracting a network at a given time instant
Here, for a given time instant t, we extract the network

g�=f(·, t) :R3!R from a neural network f✓ :R3⇥R!R.

Suppose f✓(p, t) = Ad+1 � fd � · · · � f1(p, t) + ad+1, with

each i-layer defined by fi(pi) = sin(Aipi + ai).
To define g� such that g�(p) = f✓(p, t) for all (p, t), we

modify the first layer f1(p, t) = sin(A1(p, t)+a1) of f✓.

The matrix A1 has 4 column vectors {w1, w2, w3, u} in



RM2 , where M2 is the dimension of the codomain of f1.

Denoting p by (x, y, z), we obtain

A1(p, t) = x · w1 + y · w2 + z · w3 + t · u,

We use the matrix B1 consisting of the columns w1, w2, w3,

and the bias b1 = a1 + t · u to set the first layer g1 of g�.

Specifically, we define g� through:

g�(p) = Ad+1 � fd � · · · � f2 � g1(p) + ad+1.

Note that g� equals f✓, except for its first layer f1(p, t),
which is replaced by g1(p). We define it as

g1(p) = sin
⇣
x · w1 + y · w2 + z · w3| {z }

B1p

+ t · u+ a1| {z }
b1

⌘
.

From the definition of g�, we have g�(p) = f✓(p, t), which

implies a kind of opposite direction of Prop 2.1.

Proposition 3.1. Let f✓ :R3⇥R!R be a neural network,

and t 2 R. There is a network g� : R3 ! R with the same

hidden layers of f✓ such that f✓(p, t)=g�(p) for all p2R3
.

4. Ablation studies
The ablation studies detailed below were performed us-

ing the MCE (Eq 1) under two settings: With our initializa-

tion scheme, presented in Prop 2.1, and the standard initial-

ization [3]. The goal is to compare the training convergence

of data constraint Ldata and LSE constraint LLSE for both

initialization schemes under different circumstances.

We will visualize the graphs of Ldata and LLSE during the

training of a neural network f✓ : R3 ⇥R ! R to satisfy the

MCE within a time interval (a, b). In the upcoming exper-

iments, we will use the SDF g : R3 ! R of the Bunny as

the initial condition, f = g on R3 ⇥ {0}. To initialize f✓
using our method, we approximate g by a network g�.

4.1. Varying time interval
Here, we vary (a, b) in the MCE with scale ↵ = 0.001.

We recall that the initial condition is at 02 (a, b) and on

the positive (negative) part, the MCE smooths (sharpens)

it. Thus, the positive part should be easier to train since

no higher frequencies would arise. In contrast, training the

negative part creates new higher frequencies, which could

take longer to learn. We validate it in the following inter-

vals:

(a, b) =(0, 0.25), (0, 0.5), (0, 1),

(�0.1, 0.25), (�0.1, 0.5), (�0.1, 1),

(�0.25, 0.25), (�0.25, 0.5), (�0.25, 1).

Fig 1, 2 present the data/LSE constraint convergences for

these intervals. As expected, our initialization (top images)

provides a better training convergence. For Ldata, this is due

to the fact that f✓ = g� at t = 0, thus, Ldata only have to

maintain this restriction.

Figure 1. Data constraint values for different training intervals.

The convergence of the constraint Ldata and LLSE are

faster, for both initializations, when using smaller intervals,

as can be seen in the case of (0, 0.25) (in purple). They also

take longer to train on intervals with a negative part. This is

likely because the solutions in such regions are sharper, re-

quiring, thus, more frequencies for accurate representation,

if a solution exists at all.

Figure 2. LSE constraint values for different training intervals.



4.2. Varying MCE scale

Here, we use the interval (a, b) = (�0.1, 1) and vary the

scales ↵ = i⇥ 10�3
for i = 1, 2, 3, 4, 5, 10, 100. In theory,

increasing (a, b) while fixing ↵ is equivalent to the previous

experiment. However, in practice, the representation capac-

ity of f✓ may not be enough to learn large variations in a

short time period. This is evident in Figs 3-4, where the

convergence of Ldata and LLSE is sorted by ↵. In general,

our initialization results in a better convergence, but we ob-

served that using a high scale, Ldata first diverges since LLSE

dominates the training. See the case ↵ = 0.1 (in purple).

Figure 3. Data constraint values for different MCE scale values.

Figure 4. LSE constraint values for different MCE scale values.

4.3. Varying the point-sampling proportions
This experiment aimed to evaluate how the point-

sampling of initial and intermediate conditions im-

pacts the training convergence of Ldata and LLSE.

We used the default point-sampling proportions of

{l1, l2, l3} = {0.25, 0.25, 0.5}, as well as {0.1, 0.1, 0.8}
and {0.4, 0.4, 0.2}. Here, l1, l2, and l3 are the numbers of

space-time, on-surface, and off-surface points sampled at

each training step (see Sec 4.2 of the main paper).

Figs 5-6 present the convergences of the resulting con-

straints during training. It can be observed that sampling

fewer points at t = 0 results in a better convergence.

Figure 5. Ldata values for different sampling proportions.

Figure 6. LLSE values for different sampling proportions.



However, when using different sampling proportions, we

obtain new constraints Ldata and LLSE. Also, sampling

fewer points at t = 0 can result in a longer convergence

time for Ldata, as shown in the initial condition (Bunny) for

each proportion in Fig 7. This is probably due to the spec-

tral bias phenomenon: lower frequencies are learned first.

As a result, LLSE benefits from having a smoother initial

condition and prevents the fitting at t = 0.

Figure 7. The zero-level sets of f✓ at t = 0 trained using the pro-

portions {0.1, 0.1, 0.8}, {0.25, 0.25, 0.5}, and {0.4, 0.4, 0.2}.

4.4. Varying the network width
This experiment evaluates the impact of the network

width on the training convergence using our standard ini-

tializations. We began with a width of 128 neurons and

increased it by 16 neurons up to a limit of 256. The remain-

ing parameters are set to (a, b) = (�0.25, 1), ↵ = 1e�3,

{l1, l2, l3}= {0.25, 0.25, 0.5}. As expected, increasing the

width leads to better convergence; see Figs 8-9.

Figure 8. Data constraint values for different network widths.

Figure 9. LSE constraint values for different network widths.

4.5. Varying the initial condition

Finally, we vary the initial condition of the MCE to eval-

uate the convergence of the network f✓ on different models:

Bob, Max Planck, Falcon, Witch, and Neptune. During the

training of each model, we fix the sampling proportions to

{l1, l2, l3}={0.25, 0.25, 0.5}. Table 1 presents the network

architectures (the width of the hidden layers), the time re-

quired for training 500 epochs, the animation interval (a, b),
and the MCE scale ↵ parameters.

Model Network arch. Interval Scale Time (s)
Bob [64, 64] (�0.5, 1) 1e� 2 5.04

Max [128, 128, 128] (�0.5, 1) 2e� 3 7.07

Falcon [160, 160, 160] (�0.1, 1) 1e� 3 112.17

Witch [256, 256, 256] (�0.5, 1) 1e� 3 143.34

Neptune [300, 300, 300] (�0.1, 1) 2e� 4 162.42

Table 1. The network architectures and the time spent in their train-

ing to learn the evolution of the Bob, Max Planck, Falcon, Witch,

and Neptune surfaces under the MCE.

For the sampling of on-surface points, we used different

point clouds sampled from the original models. This af-

fects the time needed to train our networks, as each epoch

is defined as a complete iteration over the point-cloud. The

Bob, Max Planck, Falcon, Witch, Neptune have 5344, 5002,

72466, 77553, 72668 points, respectively.

Fig 10 illustrates the zero-level sets of the resulting evo-

lutions of Bob, Max Plank, Falcon, Witch and Neptune

models (middle). The sharpened models are on the left

column. Notice that their geometric features are enhanced.

Particularly, Max Planck’s nose, mouth and ears are notice-

ably more prominent. The same occurs for the Wizard’s

sword and cape, and Neptune’s hands and spear tip.



Figure 10. The zero-level sets of f✓ for Bob, Max Plank, Falcon,

Witch, and Neptune models (middle). The left and right columns

give the sharpening and smoothing of the models.
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