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1. Introduction

An implicit neural representation (INR) is a neural network

that parameterizes a signal in a low-dimensional domain. This

representation differs from classical methods, as it encodes the

signal implicitly in its parameters by mapping coordinates to

target signal values. For example, in the case of an implicit sur-

face, an INR f takes a 3D point p and returns the isosurface

value f (p). In this scenario, we aim for the INR to approxi-

mate the input data as closely as possible, similar to the classic

problem of approximating signals using radial basis functions

(RBFs). INRs provide a compact, high-quality, and smooth ap-

proximation for discrete data. Furthermore, INRs allow for the

calculation of higher-order derivatives in closed form through

automatic differentiation, which is present in modern machine

learning frameworks.

INRs are smooth, compact networks that are fast to evalu-

ate and have a high representational capacity. This has moti-

vated their use in several contexts; examples include images

⋆Only capitalize first word and proper nouns in the title.

[4, 20], face morphing [25], signed distance functions [19, 17,

27, 10, 28, 34, 26, 6], displacement fields [36], surface anima-

tion [12, 18], multiresolution signals [21, 24, 10], occupancy

[13], constructive solid geometry [11], radiance fields [15, 23],

textures [22], among others. These works leverage the fact that

INRs are compositions of smooth maps to explore their deriva-

tives during training.

The parameters θ of a INR f are implicitly defined as a solu-

tion of a non-linear equation L(θ) = 0. Where L is defined as

a function that enforces f to match to the samples {pi,f(pi)} of

the ground-truth functionfand to fit some properties hold byf.

For example, to fit f to the signed distance function (SDF) of a

surface, we add a term to the loss function to force the gradient

∇ f of the network to be unitary; the Eikonal equation ∥∇ f ∥ = 1.

SDFs are solutions of this equation, which is used to regularize

the underlying implicit function. In this case, the output f (p)

distance value can be positive or negative, representing whether

a point is inside or outside the underlying compact surface. A

distance value of zero indicates that the point lies on the implicit

surface S . The gradient N = ∇ f gives the normal field of S and
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its Hessian H f , the shape operator, gives the curvatures of S .

In this work, we present a survey on such geometric approaches

that explore these differential objects during training and infer-

ence of INRs.

Specifically, we define a geometric INR as a neural network

f : R3 → R such that its zero-level set f −1(0) = {p | f (p) = 0}

approximates a given surface S . To train f it is common to use

a loss function L that incorporates a geometric regularization.

Again, to enforce f −1(0) ≈ S , we force f to be the SDF of S

by minimizing the Eikonal constraint
∫
Ω

(∥∇ f ∥ − 1)2dp, where

Ω is the training domain which contains S . Another important

geometric term arises from forcing the alignment of the normals

N of S with the gradient ∇ f , that is,
∫

S

(
⟨∇ f ,N⟩ − 1

)2dS .

This paper brings an in-depth discussion about Geometric

Implicit Neural Representations. It also expands on previously

explored applications and showcases a set of real-time render-

ing applications. To do so, we follow the training pipeline for

geometric INRs. It begins with input data, an oriented point

cloud {pi,Ni}
n
i=1 consisting of points pi on a surface S and their

corresponding normals Ni. Next, we define a neural network

(INR) f : R3 → R with parameters θ to fit the signed dis-

tance function (SDF) of S . This fitting is achieved through op-

timization of a geometric loss function L using a variant of

the gradient descent algorithm. However, computing the gra-

dient ∇L may be infeasible in practice due to the size n of the

point cloud. Thus, we must consider mini-batches of pi,Ni for

the sampling step. In this step, we exploit geometric properties

of the underlying surface S to improve training. Once the INR

f is trained, we can leverage its SDF properties for various ap-

plications, such as geometry inference using sphere tracing or

surface evolution using level-set methods.

We also leverage the smoothness of an INR to estimate the

curvature measures of its level sets analytically, eliminating the

need for discretization. We present recent frameworks that uti-

lize this approach to enhance the training performance of INRs

by dynamically sampling data points during training.

We also present examples of smooth neural networks applied

to model dynamic variations of implicit surfaces governed by

the level set equation (LSE). To achieve this, we demonstrate

a framework that extends the representation of neural implicit

surfaces to the space-time domain R3 × R[18, 12]. The net-

work training involves two constraints: initially, a data term is

responsible for fitting the initial condition to the correspond-

ing time instant, typically R3 × {0}. Subsequently, an LSE term

guides the network to approximate the inherent geometric evo-

lution prescribed by the LSE, without any supervision. Poten-

tial applications include deforming an initial surface towards

general vector fields, smoothing and sharpening using the mean

curvature equation, and interpolating initial conditions.

Terminology. In the visual computing community, implicit

neural representations have also been referred to as neural

fields, neural implicits, and coordinate-based neural networks.

In this paper, we focus on the terminology ”implicit neural rep-

resentations” despite some references using the other terms.

The paper is organized as follows. Section 2 discusses

the main aspects of implicit surface reconstruction, focusing

on the application of the Eikonal equation and classical ap-

proaches. Section 3 shows a geometric framework which can

be used to solve the geometric implicit neural representation

problem. Section 4 presents applications considered state-of-

the-art for INRs and Section 5 show a framework for model-

ing dynamic variations of implicit surfaces under the level set

equation(LSE).The final remarks are drawn at then conclusion

in Section 6.

2. Implicit surface reconstruction

Implicit representations are commonly used in computer

graphics to represent 3D shapes. Unlike explicit geometric rep-

resentations, which use triangle meshes, implicit geometric rep-

resentations encode a surface S as the (regular) zero-level set of

a functionf : R3 → R. For the surface S to be regular, the zero

must be a regular value of f, that is, ∇f , 0 on S = f−1(0).

Again, SDFs is a common example of an implicit representa-

tion, where f is the solution of the Eikonal equation

∥∇f∥ = 1 subject to f= 0 on S . (1)
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In this work, we explore strategies to solve Equation 1 by

parameterizing fwith an INR f : R3 → R, with parameters θ.

To approximate a solution of this equation, we define a loss

function L to enforce f to be a solution. Solving this equation

reveals that ⟨∇f,N⟩ = 1 on S , indicating that ∇faligns with the

normals N of S . We refer to a solution of the above problem as

a geometric INR.

Before presenting examples of training pipelines for geomet-

ric INRs, we recall some classic approaches.

2.1. Classic approaches

Radial basis functions (RBFs) [3] is a classical method that

can be used to approximate the SDF of a surface S from a sam-

ple {pi,fi} of this function. The RBF is expressed as s(p) =∑
λiϕ(∥p − pi∥), where the coefficients λi ∈ R are determined

by imposing s(pi) = fi. The radial function ϕ : R+ → R is a

real function and pi are the centers of the RBF [17]. Note that

the RBF representation depends on the data since its interpolant

s depends on the input points pi.

Poisson surface reconstruction [9] is another classical

method widely used in computer graphics to reconstruct a sur-

face from an oriented point cloud {pi,Ni}. It revolves around

solving the Poisson’s equation, using {pi,Ni}. The objective is

to reconstruct an implicit function f of the underlying surface

by asking it to be zero at pi and to have gradients at pi equal to

Ni. The pairs {pi,Ni} are used to define a vector field V . Then,

f is computed by optimizing min f ∥∇ f − V∥ which results in a

Poisson problem: ∆ f = ∇ · V .

3. Geometric INR framework

3.1. Overview of the problem

This section presents an overall of the geometric framework

used to solve the geometric INR problem of training the pa-

rameters θ of an INR f : R3 → R to approximate the SDF

of a desired surface S . To present this pipeline we follow the

scheme illustrated in Figure 1.

The input is a sample of oriented points {pi,Ni}
n
i=1 from the

ground truth surface S , and the output is an INR f approxi-

mating the SDF of S . The framework explores the normals N

to define a loss function and the curvatures of the of the surface

to sample the mini-batches.

Sample  
of a surface 

{pi, Ni}
S

Training 
Find a minimum of  

using gradient descent.
ℒ

 
 

ℒ(θ) = ℒdata(θ) + ℒEik(θ)

Sampling



is smooth

S ≈ f −1(0)

f : ℝ3 → ℝ

Neural network

{ |∇f |=1 in Ω,
f = 0  on S

Eikonal problem

Input

Output

Inference

Loss function

Fig. 1. geometric INR pipeline.

Next, we define a neural network (INR) f , with parameters

θ, to approximate the SDF of S . For this, we define a loss func-

tion L = LData + LEik to enforce f to be a solution of Eikonal

equation 1. The data term LData forces f to fit the input data.

LEik forces f to be a solution of the Eikonal equation; thus, it

works like a regularization, forcing f to be an SDF.

The training step consists of using a variant of the gradient

descent algorithm to find a minimum of L. However, in prac-

tice, computing the gradient ∇L(θ) may be unfeasible; thus, we

consider sampling minibatches of the input data {pi,Ni}. Once

we have the INR f trained, we can infer its geometry to render

its zero-level set f −1(0). The following sections present each

component of this pipeline.

We now present the geometric INR training framework in

detail; for this, we follow the notation in [17].

3.2. Input data

Given an (oriented) point cloud {pi,Ni}
n
i=1 sampled from the

ground-truth surface S , we can try to reconstruct the SDF

f : R3 → R of S . For this, points outside S may be added

to the point cloud {pi}. After estimating the SDF on the result-
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ing point cloud, we obtain a set pair {pi,fi} of points and the

approximated SDF values.

3.3. Network architecture

Next, we have to define the architecture of the INR f which

will be used to approximate the input data {pi,fi}. For this, we

assume the INR to be parametrized by a multilayer perceptron

(MLP) f : R3 → R defined as follows.

f (p) = Wn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f0(p) + bn (2)

where fi(pi) = φ(Wi pi + bi) is the ith layer, and pi is the output

of fi−1, i.e. pi = fi−1 ◦ · · · ◦ f0(p). Here we applies the smooth

activation function φ : R → R to each coordinate of the affine

map, which is formed by the linear map Wi : RNi → RNi+1

and the bias bi ∈ RNi+1 . The operators Wi are represented as

matrices, and bi as vectors, combining their coefficients to form

the parameters θ of the function f . In the following section we

define a loss function to train θ to fit f to the input data.

The choice of the activation function φ has a great impact on

the representation capacity of f . For example, using sines, that

is φ = sin, results in a powerful INR architecture [28, 17].

3.4. Loss function

We now define a loss function L to train the parameters θ

of the INR f . For this, we consider the input data {pi,Ni} and

the Eikonal equation 1 to define L as the composition of three

components: Ldata, and LEik.

Specifically, recall that {pi,Ni} is a sample of a compact sur-

face S in R3. We aim to find a set of parameters θ such that its

corresponding INR f : R3 → R aproximates the SDF f of S .

To do this, we minimize the loss function given by Equation (3),

which enforces f to be a solution of the Eikonal equation.

L(θ)=
1
n

∑
i

f (pi)2 +
(
1−⟨∇ f (pi),Ni⟩

)
︸                                    ︷︷                                    ︸

Ldata

+

∫
Ω

(
1−∥∇ f ∥

)2dp

︸              ︷︷              ︸
LEik

. (3)

Here, LEik encourages f to be the SDF of a set X by ensuring

that ∥∇ f ∥ = 1, Ldata encourages X to contain S ; i.e. f = f on

{pi}. Additionally, it asks for the alignment between ∇ f and the

normal field of S .

Typically, an additional term is added to Equation (3) to pe-

nalize points outside S , forcing f to be the SDF of S (i.e.,

X = S ). In practice, we extended Ldata to consider points out-

side S by using an approximation of the SDF of S . This also

help us to avoid the neural network to generate spurious com-

ponents in the zero-level set f −1(0). For this, we can incorpo-

rate off-surface points to Ldata. To achieve this, we consider a

sample of k points {pi}
n+k
i=1 in the training domain Ω outside the

surface S . Then, we consider the following data constraint.

Ldata =
1

n + k

n+k∑
i=1

(
f (pi) −fi

)2
+

1
n

n∑
i=1

(
1−⟨∇ f (pi),Ni⟩

)
(4)

Where fi is an approximation of the SDF of S at the points pi,

which are computed during training. To achieve this, we use

the following approximation:

|f(p)| ≈ min
i≤n
∥p − pi∥ (5)

The sign of f(p) at a specific point p is negative if p lies in-

side the surface S and positive otherwise. This approximation

method enables the training of the neural network to work effec-

tively with the SDF for surface reconstruction. Notice that for

each vertex pi with a normal vector Ni the sign of ⟨p − pi,Ni⟩

indicates the side of the tangent plane that p belongs to [17].

Therefore, we can estimate the sign of f(p) by adopting the

dominant signs of the numbers
〈
p − p j,N j

〉
, which {p j} ⊂ V is

a set of vertices close to p. This set can be estimated using an

Octree or KD-tree, to store the points {pi} [17].

3.5. Sampling

Let {pi,Ni,Si} be a sample from an unknown surface S ,

where {pi} are points on S , {Ni} are their normals, and {Si} are

samples of the shape operator. Also, {pi} is a set composed of

the vertices of a triangle mesh, normals, and its curvatures.

In practice, we could evaluate L using a dataset of points

dynamically sampled during training. This dataset includes on-

surface points {pi} and off-surface points in R3 − S .

For the off-surface points, we can choose uniform sampling

within the domain of fθ. Alternatively, we may bias the sam-

pling by including points in the tubular neighborhood of S ,
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which is a region around the surface formed by segments along

the normals.

The shape operator contains important geometric features of

the data. Regions with points having higher absolute principal

curvatures κ1 and κ2 encode more detailed information, while

points with lower absolute curvatures represent less intricate

geometry. This allows us to focus sampling efforts on regions

with significant geometric variations and minimize the need to

sample planar regions where curvatures are small.

We can use a smart method to select on-surface points {pi} for

faster learning without compromising quality. We divide {pi}

into three sets based on their features: V1 (low), V2 (medium),

and V3 (high). During training, we prioritize points in V2 and

V3 as they have more geometrical features. We sample fewer

points from V1 to avoid redundancy and increase sampling from

V2 and V3 for faster learning. In this way, we focus on essential

points for faster and better results.

During training, we usually pick minibatches uniformly. But

here, we can use curvature information to focus on important

features. We set n as the sum of n1, n2, and n3, where each ni

is a positive integer. This allows us to create three categories:

low, medium, and high feature points, denoted as V1, V2, and

V3, respectively.

When forming minibatches, each of size m = p1m + p2m +

p3m = 10000, we can allocate pim points to the corresponding

category Vi. Instead of uniform sampling, we adjust p1, p2, and

p3 to prioritize V2 and V3.

In Figure 2, we can see a comparison of uniform (first line)

and this adaptive approach (line 2), where we double the pro-

portion of medium and high feature points. This depends on

specific values such as ni. In this test, n1 is half of n, n2 is 4n
10 ,

and n3 is n
10 , making sure V1 contains half of all points. This in-

novative sampling strategy greatly enhanced convergence rates

during our experiments.

3.6. Applications for INRs

Implicit neural representations has several applications for

real-time rendering, visualization, and computational geometry.

Usually, the neural network presented in this paper has a simple

Fig. 2. Neural implicit surfaces approximating the Armadillo model. The
columns indicate the zero-level sets of the neural implicit functions after
29, 52, 76, and 100 epochs of training. Line 1 shows the results using
minibatches sampled uniformly in V . Line 2 presents the results using
the adapted sampling of minibatches with 10% / 70% / 20% of points with
low/medium/high features.

architecture and does not demand powerful hardware[27]. Also,

the method can accurately represent geometric details with pre-

cision. In Figure 3, we can se the original Bunny model (left)

with its reconstructed neural implicit surface (right) after 886

training epochs. The Bunny model is a triangular mesh with

106712 vertices. Notice how the original triangulation (left)

appears slightly coarse, like in the ear of Bunny, but the recon-

structed neural Bunny fixes this and provides a more detailed

representation.

Fig. 3. The Bunny represented by the original triangular mesh and a im-
plicit representation.

3.6.1. Sphere tracing

One application for neural implicit representations is to use

neural networks in real-time rendering using algorithms such as

Sphere Tracing[6]. To do so, the method provides a robust SDF

approximation even compared with RBF. Figure 4 gives a vi-

sual evaluation presenting a sphere tracing of the zero-level of
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this method. Since it has a good SDF approximation, the algo-

rithm can ray-cast the surface with precision avoiding spurious

components.

Fig. 4. Sphere tracing of neural surfaces representing the Armadillo and
Bunny models. Both networks to represent the objects have the same ar-
chitecture and were trained on the same data during 500 epochs.

3.6.2. Curvature estimation

To train neural implicit functions, we can use a loss func-

tion that approximates an SDF that allows the use of high-order

derivatives, such as the alignment between the principal direc-

tions of curvature, to learn more geometric details [17].

The study of discrete variations of triangle mesh normals is

an important topic in discrete differential geometry and it is very

helpful in neural implicit applications, especially when repre-

senting 3D shapes. A discrete shape operator represents these

variations. Principal directions and curvatures can be defined

on edges, with one curvature being zero along the edge direc-

tion, and the other measured across the edge using the dihedral

angle between adjacent faces. The shape operator at the vertices

is estimated by averaging the shape operators of the neighbor-

ing edges. The approach of Cohen et al. [17, 14, 5, 31] can be

considered in this context.

We train fθ to approximate the SDF of T . Using the network,

we map properties of its level sets to T and estimate curvature

measures. In Figure 5, we trained a neural implicit function

for the Dragon model, and the calculated curvature using fθ is

smoother and respects the original mesh’s curvature distribu-

tion. Also, in Figure 6 we show the principal curvatures and

directions calculated for the Dragon model.

Fig. 5. Gaussian and mean curvatures of the Dragon neural surface. The
surface points were computed using sphere tracing and its analytic curva-
tures using PyTorch framework.

Fig. 6. Principal curvatures and directions overlaid on the Dragon.

4. Signed distance functions and implicit representations

4.1. INR approaches

4.1.1. Implicit Geometric Regularization

Several techniques exist for creating neural implicit represen-

tations [19]. For example, IGR [7] is one of the first methods

to propose to use the Eikonal equation as regularization. Since

they needed to use the gradient ∇ f in the loss function, they

considered f to be neural network with the softplus activation

function. Implicit Differentiable Renderer (IDR) [35] used IGR

as basis to propose a neural network that learns geometry, cam-

era parameters, and a neural renderer.

Implicit geometric regularization (IGR) [7] is a geometric

INR technique to compute the parameters θ of an INR f by
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forcing it to fit the SDF of a surface S . In other words, it pro-

vides geometric pipeline to solve the Eikonal problem 1. IGR

aims to refine and regularize the shape defined by the zero-level

set of an implicit function using additional regularization terms.

The authors observe that a relatively simple loss function, sim-

ilar to the loss function in SIREN, encourages the neural net-

work to vanish on the input point cloud and to have a unit norm

gradient (Eikonal constraint).

Let {pi,N}ni=1 ⊂ R3 be an oriented point cloud sampled from

a smooth compact surface S . IGR uses a pipeline similar to the

one described in Section 3 to train the parameters θ of a geo-

metric INR f : R3 → R by enforcing it to be a solution of

Equation 1. Therefore, it forces f = 0 in {pi} and ∇ f (pi) = Ni.

Again, the implicit geometric regularization occurs because the

loss function used during training (Equation 3) encourages cer-

tain geometric properties to be preserved by using the Eikonal

term. These properties are not explicitly encoded in the train-

ing data or loss function but emerge due to the neural network

structure and the optimization process [16, 7]. Figure 7 shows

some level sets of MLPs trained using IGR.

Fig. 7. Level sets of MLPs trained with IGR method [7]

4.1.2. Sinusoidal Implicit Networks

Sitzmann et al. [28] propose to leverage periodic activation

functions for implicit neural representations and demonstrate

that these networks can represent signals in high detail. Specif-

ically, they parameterize the INR by a sinusoidal MLP (Equa-

tion 2) using the sine as activation function (φ = sin) and

propose an initialization scheme that guaranties instability and

good convergence during training. As in IGR[7], we can use

Sinusoidal INR (SIREN) to estimate the SDFs of surfaces with

high-quality from oriented point samples.

This approach can reproduce fine details of a 3D surface, as

show in Figure 8, however, exploring the surface curvatures, we

can improve the reconstruction to achieve a smooth and high-

fidelity representation.

Fig. 8. Shape representation. SIREN fit signed distance functions parame-
terized by implicit neural representations directly on point clouds.

4.1.3. Band-limited Coordinate Networks (BACON)

Lindell et al. [10] introduce BACON, an architecture

aimed at addressing the limitations associated with traditional

coordinate-based networks, especially their challenges in spec-

tral analysis and behavior prediction at unsupervised points,

and their confinement to single-scale signal representation. BA-

CON proposes to create an analytical Fourier spectrum, which

facilitates controlled behavior at unsupervised points and allows

for the signal’s spectral characteristics-driven design. It also

supports multiscale signal representation without requiring su-

pervision at each scale. This approach has been applied to the

neural representation of images, radiance fields, and 3D scenes

through signed distance functions, illustrating its capability to

represent signals across scales effectively.

In addressing the limitations of BACON, it is noted that its

cut-off of the Fourier spectrum introduces artifacts, particularly

the ringing effect observed in images and noise on surfaces.

This limitation stems from the inherent constraints of band-

limiting, which, while facilitating certain advantages in signal

representation, can also result in undesirable visual artifacts that

affect the quality of the output in applications involving high-

frequency detail.
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4.1.4. Geometry Processing with Neural Fields

NFGP [30] suggests utilizing neural fields for geometry pro-

cessing, as they offer distinct advantages. The authors propose

approximating a local surface of a level set by utilizing the

derivatives of the underlying field. By solely relying on the field

derivatives, it is possible to use intrinsic geometric properties

of the level set, such as curvatures. This enables the construc-

tion of loss functions that capture surface priors like elasticity

or rigidity. This is made possible by exploiting the inherent

infinite differentiability of neural fields which facilitates the op-

timization of loss functions involving higher-order derivatives

through gradient descent methods. Consequently, unlike mesh-

based geometry processing algorithms that rely on surface dis-

cretizations to approximate these objectives, this strategy can

directly optimize the derivatives of the field.

4.1.5. Differential Geometry in Neural Implicits

In this subsection, we will present works that use concepts of

differential geometry combined with the properties described in

their loss functions. Exploring Differential Geometry in Neural

Implicits (i3D) [17], introduces a new implicit neural represen-

tation model, which includes a framework that takes a sample

of points from a surface S , along with their corresponding nor-

mals and curvatures, as input (the ground truth). Then, a neural

network generates the SDF approximation as its output. Also,

the authors proposes a loss function that enables the incorpora-

tion of tools from continuous differential geometry during the

training of the neural implicit function. During the network’s

training, the method leverages the discrete differential geome-

try of the point-sampled surface to selectively sample signifi-

cant regions. This approach ensures a robust and efficient train-

ing process while preserving essential geometrical details. The

method uses the closed-form derivatives of the neural implicit

function to estimate differential measures, such as normals and

curvatures, for the underlying point-sampled surface. This es-

timation is feasible because the point-sampled surface lies in

the vicinity of the network’s zero-level set. This feature allows

for the accurate calculation of differential measures using the

neural implicit function.

ORCa [32] uses the concepts established by i3D. The au-

thors discuss the potential of using reflections on glossy objects

as a means to capture valuable and hidden information about

the surrounding environment. The proposed approach converts

glossy objects with unknown geometry into radiance-field cam-

eras to capture images from the perspective of the object. The

key insight involves transforming the object surface into a vir-

tual sensor, capturing cast reflections as a 2D projection of the

5D environment radiance field surrounding the object. Recov-

ering the environment radiance fields enables depth and radi-

ance estimation from the object to its surroundings, facilitates

beyond field-of-view novel-view synthesis, and allows imaging

around occluders caused by nearby objects in the scene. In par-

ticular, they use the differential geometry techniques developed

by Novello et al. [17] to estimate the curvature for neural im-

plicit surfaces.

MARF [29] introduces the Medial Atom Ray Fields, a neu-

ral object representation enabling differentiable surface render-

ing with a single network evaluation per camera ray. MARFs

address challenges like multi-view consistency and surface dis-

continuities by using a medial shape representation, offering

cost-effective geometrically grounded surface normals and ana-

lytical curvature computation. They map camera rays to multi-

ple medial intersection candidates and demonstrate applicabil-

ity in sub-surface scattering, part segmentation, and represent-

ing articulated shapes. With the ability to learn shape priors,

MARFs hold promise for tasks like shape retrieval and comple-

tion.

NAISR [8] shows that some of the existing neural implicit

shape representations fail to represent shapes while captur-

ing individual dependencies on covariates precisely. To ad-

dress this, they propose the 3D Neural Additive Model for In-

terpretable Shape Representation (NAISR), which deforms a

shape atlas based on disentangled covariates. It captures shape

population trends and allows for patient-specific predictions

through shape transfer. NAISR combines deep implicit shape

representations with atlas deformation according to covariates,

offering interpretability. Also they use the same concepts for
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the loss function as the ones defined by Sitzmann et al. [28]

and Novello et al. [17].

Zhang et al. [37] introduce implicit neural representations to

topology optimization, creating a framework named TOINR. In

TOINR, a Topology Description Function, formed by a Neu-

ral Network, determines the topology of structural materials.

They use sine activations with a MLP architecture, with pre-

defined spatial points as inputs and implicit representations of

topological boundaries as outputs. The neural network param-

eters evolve iteratively, updating structural topologies based on

response analysis and optimization functions. TOINR ensures

computational differentiability, employing automatic differenti-

ation for sensitivity analysis.

Berzins et al. [2] show that compared to classic geometry rep-

resentations, neural representations lack intuitive control over

shape. To address this, they utilize boundary sensitivity to in-

terpret how parameter changes affect the shape boundary, en-

abling the study of achievable deformations. This allows for ge-

ometric editing by finding parameter updates that approximate

prescribed deformations. The method allows local deformation

according to priors like semantics or rigidity.

NeuS [33] proposes a volume rendering method to render im-

ages from an implicit SDF and minimize the difference between

the rendered images and the input images, resulting in a neural

network representing the SDF. Yifan et al. [36] used displace-

ment fields to represent detail related to a simplified base SDF

to render a detailed surface.

5. Dynamic INRs

As presented in previous sections, coordinate-based neural

networks serve as efficient geometry representations, similar to

parametric level sets where the zero-level set defines the sur-

face of interest. In this section, we explore a framework to ap-

ply deformations or animations to these implicit surfaces. This

Level set theory is a powerful mathematical framework and pro-

vides a versatile approach for representing and evolving com-

plex shapes over time. In the next subsections, we define the re-

lationship between neural homotopies, partial differential equa-

tions (PDE) and Dynamic INRs, the problem modeling, and

three application examples.

5.1. Neural homotopies and PDEs

To train neural networks to model animations of an implicit

surface S , the level sets g−1(c), with c ∈ g(R3), of the neu-

ral implicit function g could be used to animate S ≈ g−1(0).

However, this does not allow intersections between surfaces at

different time steps, because the level sets of g are disjoint. To

avoid this, it is possible to extend the domain of the neural im-

plicit function adding parameters to control animations. R3 has

been considered as the domain of smooth neural implicit func-

tions [28, 7, 18]. However, we can augment R3 by a product

space R3 × Rk, where p ∈ R3 denotes a point in the space and

c ∈ Rk denotes a vector that controls k direction of possible an-

imations (rigid motion, smoothing, morphing, ...) of the initial

implicit surface.

Specifically, let f : R3 ×R→ R be a smooth neural function

representing an one-parameter family of neural implicit func-

tions ft : R3 → R defined by ft(p) = f (p, t). Topologically,

the family ft represents homotopies between any two functions

ft0 , ft1 : R3 → R, with t0, t1 ∈ R. Thus, we say that f is a neu-

ral homotopy function. The underlying family of neural implicit

surfaces S t = f −1
t (0) is a neural animation of the initial surface

S 0 = S . Restricted to the interval [t0, t1], the surfaces S t pro-

vides a neural morphing between the neural implicit surfaces

S t0 and S t1 . Observe that these surfaces can contain singulari-

ties as their topologies may change over time t.

For a neural implicit function, we could consider the neural

homotopy f : R3 × R → R be a solution of a general partial

differential equation (PDE) problem

F
(
∇n f , . . . ,∇1 f , f , p, t

)
= 0

where ∇k f denotes the derivative of order k of f . Initial-

boundary conditions could also be used.

The time t allows continuous navigation in the neural anima-

tion S t = f −1
t (0). Each instant t also represents a transformation

S 0 → S t of the initial implicit surface S 0.
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5.2. Modeling level Sets

By representing a surface evolution with a neural network fθ :

R3×R→ R, given an LSE with initial conditions, it is possible

to define a a machine learning framework, consisting of a loss

functional, sampling strategies, and a network initialization, to

train fθ to approximate a solution to the LSE problem [18].

Let gi : R3 → R be the SDFs of n surfaces S i. We train fθ by

forcing it to approximate a solution a neural LSE:F :=
∂ fθ
∂t
+ ⟨∇ fθ,V⟩ = 0 in R3 × (a, b),

fθ = gi on R3 × {ti}.
(6)

We employed the notation F to represent the LSE for brevity.

The untrained network fθ must encode the movement governed

by the vector field V . The interval (a, b) can be used to control

the resulting neural animation S t of S .

5.3. Using Vector fields

Moving a surface S towards a vector field V : R3 → R3

yields a simple Level Set Equation (LSE) where g represents the

Signed Distance Function (SDF) of S , and V can be predefined

and tailored for various applications.

Novello et al. [18] trained a neural network fθ : R3 ×R→ R

to implicitly encode the evolution of S by V using the resulting

LSE described by Equation 7:


∂ fθ
∂t
− v ∥∇ fθ∥ = 0 in R3 × (a, b),

fθ = g on R3 × {0}.
(7)

where v denotes the size of the normal component of V , and the

minus sign in Equation 7 is utilized to accommodate the inverse

of the resulting flow to compose with g.

Let us present a deformation of the Spot, where g is the SDF

of the original mesh. Let V = V1 − V2 as the sum of a source

V1 and a sink −V2, with Vi(p) = e−
|p−pi |

2

0.18 (p − pi). The points p1,

and p2 are the centers of Spot’s body and head. We can use V

to derive a loss function to train fθ and parameterize fθ with one

hidden layer fi :R128→R128 and train it for 46000 epochs. This

approach deformed the Spot’s head while it increased the body

size, as we can see in Figure 9.

Fig. 9. Evolving the zero-level sets of a network according to a vector field
with a source and a sink. The SDF of the Spot is the initial condition at
t = 0 (middle). The sink/source is inside the head/body of the Spot [18].

5.4. Interpolation between surfaces

The SDFs (gi) of two surfaces (S i) can be interpolated us-

ing an LSE approach, where a vector field V is constructed to

interpolate between the surfaces, given by V(p, t) = −
(
g2(p) −

f (p, t)
) ∇ f (t,p)
∥∇ f (t,p)∥ , with initial condition f (p, 0) = g1(p). This evo-

lution enforces each c-level set of g1 to align with g2.

The resulting LSE is expressed by substituting the vector in-

terpolation into the PDE, resulting in ∂ f
∂t − ∥∇ f ∥ (g2 − f ) = 0 in

R3×R, with f = gi on R3×{ti}. A solution f locally inflates S 1

if inside S 2 and deflates it if outside, ensuring S 1 fits into S 2. A

loss function LLSE +Ldata is defined to fit a solution of the PDE

using F := ∂ f
∂t − ∥∇ f ∥ (g2 − f ).

Suppose gi are the SDFs of the Bob and Spot (Figure 10,

left-right) and that fθ has 1 hidden layer fi : R128 → R128. It

is possible to train fθ using LLSE + Ldata. Figure 10 shows the

reconstructions of the level sets.

Fig. 10. Interpolation between Bob and Spot.

5.5. Using the mean curvature equation

The mean curvature equation can be used to evolve the level

sets with velocity given by the negative of their mean curvature,

resulting in a smoothing along the time [1, 18].

Let V(p, t) = −κ(p, t)N(p, t) be the mean curvature vector,

where N is the normal field of the level sets and κ = div N

is the mean curvature; div is the divergence operator. We can
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model the mean curvature equation as:
∂ f
∂t
− α ∥∇ f ∥ κθ = 0 in R3 × (a, b),

f = g on R3 × {t = 0}.
(8)

Intuitively, the zero-level set moves toward the mean curvature

vector −κN, contracting regions with positive curvature and ex-

panding regions with negative curvature. Thus, such procedure

smooths (sharpens) the surface if t > 0 (t < 0) and α controls

the level set evolution.

Figure 11 presents three reconstructions of the zero-level sets

of fθ at times t = 0, 0.1, 0.2 using a neural network with 2 hid-

den layers fi : R256 → R256.In this example, the Armadillo

surface was reconstructed at t = 0 and, as time progressed, it

became smoother. Regions with positive mean curvature, such

as the fingers, contracted.

Fig. 11. Armadillo smoothing using the mean curvature equation[18].

For the sharpening, the zero-level sets where reconstructed

at t = 0,−0.1,−0.2. In Figure Figure 12, regions with positive

curvature have expanded, resulting in an enhancement of the

geometrical features of the surface.

5.6. Neural Implicit evolution techniques

By using some concepts derived from i3D, Novello et al. [18]

proposed a new strategy that investigates the use of smooth neu-

ral networks for modeling dynamic variations of implicit sur-

faces under the level set equation (LSE). For this, it extends

the representation of neural implicit surfaces to the space-time

R3 × R, which opens up mechanisms for continuous geomet-

ric transformations. Examples include evolving an initial sur-

face towards general vector fields, smoothing and sharpening

Fig. 12. Using the mean curvature equation to enhance the geometrical
details of the Armadillo surface[18].

using the mean curvature equation, and interpolating initial con-

ditions.

The training for dynamic implicit neural representations in-

volves two constraints. A data term that fits the initial condition

to a corresponding time-step, typically R3 × {0}. Then, an LSE

term guides the network to approximate the geometric evolution

without supervision. Also, initializing the network with previ-

ously trained conditions accelerates convergence compared to

the standard approach. This method is one of the first neural

approaches in geometry processing that does not consider nu-

merical approximations of the LSE solution during sampling

and does not discretize the LSE in the loss function. In this

sense, NFGP [34] and NIE [12] are another two recent neu-

ral approaches exploring the concepts of dynamic implicit sur-

faces. Unlike Novello et al.[18], both operate in discrete time

steps. They represent the evolution as a sequence of networks,

with each network corresponding to a time step. Specifically,

NFGP and NIE use a network gϕ to fit an initial function g, and

then update ϕ at each time step, resulting in a sequence of net-

works gϕi : R3 → R. While this approach is similar to Runge-

Kutta methods, where the solution is fitted to a grid, NFGP and

NIE use neural networks instead. Consequently, they need to

retrain the networks to evaluate at intermediate times. Also, the

NIE[12] method is one of the unique approaches that evolve

gϕ using the mean curvature equation. However, it faces chal-

lenges as it relies on discretizing the partial derivative ∂ f
∂t . To

update ϕ, NIE employs a finite difference scheme to approxi-
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mate the discrete solutions. In computing the mean curvature

κ, NIE extracts level sets using marching cubes and utilizes

the cotangent Laplacian, which poses issues as it relies on ap-

proximating level sets by meshes using marching cubes. NFGP

evolves a network gθ : R3 → R such that the level set of the re-

sulting network gϕ can smooth or sharpen g−1
θ (0). The training

optimizes (κϕ−βκθ)2 , the difference between the mean curva-

tures of the level sets of gϕ and gθ. Then, using β < 1 or β > 1,

it would force a smoothing or sharpening of the initial surface.

NFGP trains a network gϕ for each β, thus this strategy does not

represent a continuous evolution over time and does not use the

mean curvature equation model.

6. Conclusion

In this paper, we presented a survey of techniques for train-

ing a neural network framework that capitalizes on both the dif-

ferentiability of neural networks and the discrete geometry of

point-sampled surfaces, resulting in the creation of neural sur-

faces. Our exploration included notable contributions from pa-

pers such as SIREN [28] and IGR [7] within this domain.

The integration of concepts from differential geometry holds

promise for modeling applications requiring curvature terms in

the loss function. Additionally, we demonstrated that a sam-

pling strategy based on discrete curvatures of data could en-

hance training by targeting points with more comprehensive ge-

ometric data in minibatch sampling. We also present strategies

that explore level sets of implicit neural function sets in Dy-

namic INRs.

In summary, this paper aimed to uncover strategies, such as

sampling approaches, to accelerate training convergence, and

application for Dynamic INRs. We harnessed the potential of

using approximate SDF values during training to mitigate arti-

facts and shed light on future directions in this field through the

application of discrete geometry concepts.
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[11] Zoë Marschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson.
Constructive solid geometry on neural signed distance fields. In SIG-
GRAPH Asia 2023 Conference Papers, pages 1–12, 2023.

[12] Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. A level set
theory for neural implicit evolution under explicit flows. In European
Conference on Computer Vision, pages 711–729. Springer, 2022.

[13] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger. Occupancy networks: Learning 3d recon-
struction in function space. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4460–4470, 2019.

[14] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. Dis-
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