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Abstract

We present two sketch-based modeling systems built using adaptive meshes and editing operators. The first one has the capability
to control local and global changes to the model; the second one follows geological domain constraints. To build a system that
provides the user with control of local modifications we developed a mathematical theory of vertex label and atlas structure for
adaptive meshes based on stellar operators. We also take a more theoretical approach to the problem of sketch-based surface
modeling (SBSM) and introduce a framework for SBSM systems based on adaptive meshes. The main advantage of this approach
is a clear separation between the modeling operators and the final representation, thus enabling the creation of SBSM systems suited

to specific domains with different demands.
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1 1. Introduction

2 Sketches are the most direct way to communicate shapes:
s humans are able to associate complex shapes with few curves.
+ However, sketches do not have complete shape information,
s and the information sketches do provide is often inexact; thus,
¢ ambiguities are natural. On the other hand, to create, edit,
7 and visualize shapes using computers, we need precise math-
s ematical information, such as a function formula or a triangle
s mesh. The problem of how to model shapes using sketches can
10 be formulated as how to fill the missing information about the
11 model. In the last 15 years, sketch-based modeling (SBM) has
12 become a well established research area, encompassing work in
13 different domains, such as computer vision, human-computer
14 interaction, and artificial intelligence [1]. However, this body
15 of work lacks a more theoretical approach on how to build a
1 sketch-based modeling system for a given application. In con-
17 trast, we present here two sketch-based modeling systems built
1e on top of the same framework. This framework is tailored
19 for sketch-based surface modeling (SBSM) taking advantage
20 of adaptive meshes.

21 We advocate that SBSM systems must be suited to each spe-
22 cific application: the specificities of a certain field require suit-
23 able mathematical representations for the domain model, and
24 this plays a central role in the characterization of SBSM ap-
25 plications. However, there are common requirements in many
26 SBSM applications that can be abstracted to guide the defini-
27 tion of specific representations for specific domains. These re-
2s quirements have three main aspects: (1) dynamic — the surface
2o will change during the modeling process; (2) interactive — the
3 user must be able to see the model changing with interactive
a1 response and feedback; (3) controlled freedom — some applica-
a tions have specific modeling rules and the systems must be able
a3 to incorporate these rules to guide the user in building a correct
a model, without losing flexibility.
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% Adaptive meshes are generally associated with the ability to
s produce detailed complex models using a smaller mesh. How-
a7 ever, our proposed framework is based on adaptive meshes be-
as cause they can be dynamic and enable rapid updates with lo-
a0 cal control. Different schemes of adaptive meshes can be used
w0 to create a system using our framework; indeed, the choice of
a1 the scheme must take into account the final application require-
a2 ments, such as how to represent features, what changes of topol-
a3 ogy are allowed, and how smooth the models need to be. Fig-
s ure 1 shows an instance of a model built within our framework:
45 a 4-8 adaptive mesh adapted to an implicit surface.

Figure 1: A rubber duck modeled using DASS system: the HRBF implicit
surface (left) and the adapted 4-8 mesh (right).

s The two sketch-based modeling systems that will be pre-
47 sented here are built using our proposed framework and have
ss major differences. The first system is the Detail Aware Sketch-
a0 Based Surface Modeling (DASS, Section 5), which approaches
s a common problem in many SBSM systems: the lack of good
st control of global and local transformations. We created DASS
s2 to allow us to validate our proposed framework, exploring the
ss limitations of a general system without a well defined task. To
s« achieve the required control we developed a method to cre-
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ss ate atlas structures for adaptive meshes based on stellar oper-
ss ators [2]. The second system is the Geological Layer Modeler
s7 (GLaM, Section 6), which is a sketch-based system specialized
ss for geology that aims to help geophysicists to create subsurface
s models. This system is a good illustration of controlled free-
e dom, where the sketch operators should be restricted to follow
e geological rules.

e2 2. Related Work

63 In the past decades there has been a large body of work in
e« sketch-based surface modeling [3, 4, 5, 6, 7]. However, these
es systems are more concerned with the final results and do not
es consider the theoretical aspects of the mathematical surface rep-
o7 resentation used. We discuss below the main works on free-
es form sketch-based surface modeling that start from scratch un-
e der the light of its representations.

70 There are many ways to represent surfaces in R®. The most
7 common and general are parametric representations and im-
72 plicit representations. However, in order to be used in com-
73 puter graphics and modeling applications, these representations
7« must be more specific and possess practical qualities. As exam-
75 ples we can cite the BlobTree [8], piecewise algebraic surface
7 patches [9], convolution surfaces [10], generalized cylinders,
77 polygonal meshes, subdivision surfaces, among others.

78 Teddy [3], Fibermesh [4], and Kara and Shimada [11] use
7o triangle meshes as a base representation for their modeling sys-
s0 tems. Teddy and Fibermesh start with a planar curve and create
s an inflated mesh based on the curve’s geometry. Teddy supports
s extrusion and cutting operators that cut a mesh part, then create
s a new mesh patch, which is merged with the model. Similarly,
s« Fibermesh creates a new mesh based on the input sketches and
85 places it using optimization on differential coordinates, thus en-
s abling the system to keep all previous strokes as constraints.
&7 Kara and Shimada also keep a set of 3D curves to define the
ss final model. However, they use curve loops to define triangle
s mesh patches that have minimum curvature, instead of optimiz-
9 ing across the whole mesh. These patches can be modified us-
o1 ing physically-based deformation tools. These three systems
o2 are based on the triangle mesh representation and use it to build
s their modeling operators; as result, their advantages and limita-
o tions are directly related with that chosen representation.

9 Using triangle meshes for modeling purposes has several
9 advantages over other representations. First, triangle meshes
o7 are largely used by both academia and industry, and most graph-
s ics pipelines are based on triangles, which means that what
9 you see is what you get. Moreover, there is much research
100 On triangle meshes and many techniques have been developed
101 for creating and editing meshes. On the other hand, applying
102 these techniques in sketch-based modeling is not a straightfor-
103 ward task: techniques must be chosen based on the application
104 scope, and these choices will define the limitations of the sys-
10s tem. These limitations are noticeable in Teddy and Fibermesh —
106 the latter approaches some drawbacks of the former using opti-
107 mization on differential representation. Compared with Teddy,
108 in Fibermesh the mesh quality is improved, the topology can
109 be changed, and the construction curves are maintained using

1o differential mesh techniques. However, the need for global op-
11 timization to assure mesh quality removes control over global
112 and local editions: editing a small part of the model could af-
13 fect other parts. Indeed, Nealen et al. [4] and Kara and Shi-
1a mada [11] raised this issue: Nealen et al. suggested to embed
115 the multi-resolution operator as a solution, whereas Kara and
1s Shimada suggested to improve their method of creating and
17 editing curves.

Parametric surfaces are defined by mapping a planar do-
119 main to 3D space. Working with parametric surfaces has some
120 advantages: it is simple to obtain a good triangle mesh that ap-
121 proximates the model, it is relatively easy to map textures to
122 the surface, and it provides continuous normal and curvature
123 information. Cherlin et al. [12] and Gingold et al. [5] use para-
124 metric representation to create sketch-based systems. Cherlin et
125 al. introduce two novel parametric surfaces based on sketched
126 curves; Gingold et al. convert sketches to generalized cylinders.
12z However, both approaches have issues with topology change
128 and creating augmentations; these difficulties are mainly caused
120 by the chosen parametric representations. Nasri et al. [13] and
130 Orbay and Kara [7] create their systems based on subdivision
131 surfaces — only being able to deal with set of curves that form
132 closed loops. Heightfield is another example of parametric sur-
133 face: it gives a 3D point (x,y,z) as a function of 2D coordi-
134 nates, z = f(x,y). This representation is fast and simple, and
135 is usually enough for most terrains comprising mountains and
136 hills. However, heightfields are not able to represent terrains
137 with more complex geological structures, such as overhanging
18 cliffs or caves. Hnaidi et al. [14] present a sketch-based system
139 to model terrains. The characteristics of the terrain are defined
120 by the user through a set of feature curves representing ridges,
141 river beds, and cliffs. Constraints on these curves define eleva-
142 tion, angle and noise parameters along them. These constraints
143 are then defined for the entire domain by diffusion. When the
144 smooth terrain is ready, details are added by a procedural noise
145 generator. The final terrain is a heightfield that results from
146 combining the smooth terrain with the details.

In contrast with parametric surfaces, implicit surfaces can
1 easily change topology when parameters change. They can
149 also provide a compact, flexible, and mathematically precise
150 representation which is well suited to describe coarse shapes.
151 Implicit surfaces allow global calculations, such as point clas-
152 sification (i.e., whether a point is inside or outside the surface
153 volume) and distance evaluation. They also provide with access
1s4 to local differential properties, such as normals and curvature.
155 Karpenko et al. [15] introduced variational implicit surfaces as
156 representation to sketch-based surface modeling. Vital Brazil
1s7 et al. [6] improved this formulation by adding normals as hard
18 constraints. Amorim et al. [16] presented a sketch-based system
1s9 using Hermite—Birkhoff interpolation to create implicit mod-
160 els applied to geology. Araujo and Jorge [17] provided a set
161 of sketch-based operators adapting the multi-level partition-of-
162 Unity implicit model [18]. Schmidt et al. [19] used BloobTrees
163 s @ main representation of the ShapeShop system. Bernhardt et
164 al. [20] built the Matisse system based on convolution surfaces.
1s These systems share the main disadvantages known about im-
1es plicit representations: (1) the standard graphics pipeline is not
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167 prepared to handle implicit models; (2) few industrial processes
1es Use implicit surfaces, and so the final model must be converted,;
169 (3) it is hard to control details. For (1) and (2), almost all sys-
70 tems polygonize the models (e.g., marching cubes), but there
171 are many drawbacks in this approach; e.g., some methods guar-
172 antee neither correct topology nor mesh quality.

On the whole, much of this previous work is built on a spe-
174 cific representation and its drawbacks come from that choice.
175 Inspired by that observation, we propose here a simple frame-
176 work based on adaptive meshes to allow us to mix different
177 representations in one system. This work is a extension of Vi-
s tal Brazil et al. [21]; besides new results, we include in this
179 version all technical parts of the Detail Aware Sketch-Based
10 Surface Modeling (DASS) system (Section 5), with the math-
11 ematical formulations and proofs of the label theory and atlas
182 structure. Moreover, we improve the discussion about the Ge-
183 0logical Layer Modeler (GLaM) system (Section 6) with new
18« images and a deeper discussion about the framework and ex-
165 pert feedback. Before presenting these two systems, we give an
18s overview of adaptive meshes in Section 3 and we discuss our
17 framework in Section 4.

173

188 3. Adaptive Mesh Overview

An adaptive mesh is a polygonal mesh that has the abil-
190 ity to create and remove vertices, edges, and faces following
191 predefined rules. The creation process is called refinement and
12 the deletion process is called simplification. An adaptive mesh
193 scheme starts with a base mesh which is refined until it matches
194 @ stop criterion. Usually this criterion is associated with a max-
155 imum threshold for some error metric. In summary, an adaptive
1ss mesh must have a base mesh, criteria for when to apply refine-
17 ment and simplification, and rules for how to perform refine-
15s ment and simplification. Since we are working with a dynamic
199 system, we also need an update rule.

200 Any remeshing scheme can be used to build an adaptive
201 mesh that can be used as core of the proposed framework (Sec-
202 tion 4). We chose to study a small set of mesh operators, namely
203 stellar subdivision operators and their inverses (Figure 2); these
204 Operators are largely studied in combinatorial algebraic topol-
205 0gy [22]. We focus on how to create meshes with atlas struc-
206 tures. The concepts of sequence of meshes and level of an el-
207 ement presented by Velho [23] for stellar operators give the
20s mathematical tools for building our label theory (Appendix A).
200 This theory enables the creation of atlases for adaptive meshes
210 with mathematical guarantees. We use the adaptive 4-8 mesh [2],
211 adopting the dynamic frame work presented by Goes et al. [24].
212 The 4-8 mesh refinement process only uses the edge stellar op-
213 erator and the simplification process uses its inverse. However,
214 to be able to convert a generic mesh to a 4-8 mesh, face stellar
215 operators are required [25].

216 Any dynamic adaptive mesh scheme can be used in the
217 framework proposed in the next section. We chose the 4-8 mesh
218 to build our systems chiefly because it has the following proper-
219 ties: (1) elegant mathematical theory; (2) very small support —
220 if @ small part is refined then, except for a relatively short region
221 near the change, the mesh is left untouched (see Figure 3); (3)
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Figure 2: Stellar subdivision operators and their inverses.

222 simplicity — only stellar operators are used and can be easily im-
223 plemented using the half-edge data structure [26]. Although the
224 4-8 subdivision scheme is important in many applications, we
225 do not use in this work. One could use the subdivision scheme
226 to place the vertices; in that case the 4-8 subdivision has sev-
227 eral interesting properties [27]. The 4-8 adaptive scheme has a
228 topological uniformity that can be a drawback for some appli-
220 cations: all regular vertices have valence 4 or 8 and this could
20 imply a marked direction bias in the mesh. The choice of the
231 adaptive scheme has to take into account the final application
232 TEquirements.

Figure 3: 4-8 local refinement.

233 4. Framework

24 The proposed framework enables system designers to build
235 a sketch-based system that is interactive and has controlled free-
2 dom. Interactivity means that the system must be able to show
27 how the model changes in interactive time. Controlled freedom
23s means that some applications have specific modeling rules, and
230 the system must be able to incorporate these rules to guide the
200 modeler, but without losing flexibility. Moreover, the frame-
221 work must be sufficiently general to be applied in different do-
22 mains with different requirements. We split the framework into
213 three main components: initial shape descriptor, adaptive mesh,
24 and editing operators. Figure 4 illustrates the main information
25 flow between these components.

Initial Shape Descriptor ,
Adaptive Mesh
Editing Operators

Figure 4: The framework for Sketch-based surface systems. The arrows depict
the information flow.

First of all, we need an initial shape descriptor to be ca-
217 pable to tessellate the coarsest mesh, which is called the base
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28 mesh. For example, it could be the first inflated model of the
229 Teddy or Fibermesh. For most of adaptive meshes, the base
250 mesh must have the same topology of the intended model and
25t Must approximate its geometry. Geometry approximation has
252 different meanings depending on the application; as a general
253 rule, it means that when a new vertex is created it can be cor-
254 rectly placed on the surface of the model. For instance, for an
2ss implicit surface, the base mesh has to be inside a tubular neigh-
2ss borhood of the surface so that new vertices can be projected
257 onto the surface.

258 In the proposed framework the main roles of the adaptive
2s5e mesh is to allow independent geometry representations for the
200 editing operators and to keep the coherence of the modeling
261 process. A positive side effect of using adaptive meshes is to
262 be able to use the base-mesh as a natural parametrization of the
263 surface, as discussed in Section 5.1.

The editing operators are the system parts responsible for
265 all model modifications, such that the edited mesh is still an
266 adaptive mesh. Much of the work of editing adaptive meshes is
267 done by changing the criteria and rules mentioned in the previ-
268 ous section. For instance, if it is a geometric editing the operator
260 can be implemented as a new rule for vertex update and refine-
270 ment, after which the mesh will be adapted for the new shape.
271 Since the obtained mesh is an adaptive mesh, the editing loop
272 restarts.

2z We apply this framework to create two very different sys-
27« tems. The DASS system (Section 5) starts with a set of 3D
275 curves in the space and a base mesh. We create an implicit
276 surface that interpolates the curves’ points; and the base mesh
277 creates an atlas structure. Together, they are the initial shape
278 descriptor of DASS. In contrast, the GLaM System (Section 6)
270 has three simple initial shape descriptions: one height map, one
250 parametric surface based on boundary curves, and one that is
281 2 convex sum of other two. The DASS system uses an small
2s2 set of editing operators to modify the implicit surface and to
283 create details. On the other hand, using the abstraction of oper-
284 ators, GLaM creates a large variety of complex functionalities
25 by composing operators. Both system use an 4-8 adaptive mesh
286 to build the final model.

264

257 5. Detail Aware Sketch-Based Surface Modeling (DASS)

288 The main goal of DASS system prototype is to allow the
280 user to control local modifications without changing parts of
200 the model outside the region of interest, and keeping details co-
201 herent when large deformations are introduced. Hence, we ad-
202 vocate that decomposing the model representation into a base
203 surface that supports different types of properties is a powerful
204 tool for sketch-based surface modeling. Markedly, Blinn [28]
205 introduces the idea of bump-mapping that stores geometric in-
206 formation at two levels: the base geometry and a displacement
207 map which is used to create rendering effects. The same con-
208 cept is found in [29] and [30]. They use two different types of
200 data: the first one defining the smooth geometry and the second
a0 one mapping the first to a parametric space that stores details
so1 (Similar to a texture mapping).

302 It is important to remark the difference between our so-
s0s lutions and multi-resolution works [31] and manifold surface
s« modeling [32]: multi-resolution works are concerned with sub-
sos division schemes and we use neither subdivision nor multi-scale
aos analysis. Instead, we use a 4-8 mesh, an adaptive mesh which
a7 nonetheless can simulate many subdivision schemes [23] (al-
as though we do not use it as such). Also, the manifold model-
ae ing community approaches the problem of how to build and
a0 edit manifold structures starting from a mesh or a subdivision
a1 scheme. In contrast, we use the base mesh directly to construct
a2 such structure, and we have developed simple rules to ensure
a1z correctness of the manifold structure when we apply editing op-
314 €rators.

a5 5.1. Adapted Framework

The DASS system starts with the coarse form defined by
a7 an implicit surface; after that, we build a base mesh that has
a1 the same topology and approximately the same geometry of the
ars implicit surface. The base mesh induces an atlas and provides
a0 a 4-8 base mesh. The atlas is built using a partition of the set
a1 of mesh faces, and we use it to edit the model locally. The
a2 4-8 mesh plays two roles in the framework: to build a map
323 between surface and atlas, and to visualize the final surface.
a4 After we have all parts, the 4-8 mesh is used to edit details that
azs are saved in the atlas, and the atlas maps details onto the 4-8
azs mesh. Figure 5 illustrates our framework.
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Implicit Surface

Base Mesh
N

HRBF Edition

Figure 5: The framework of DASS system. The color boxes are related with
the theoretical framework in Figure 4.

sz The first step in the framework is to obtain a coarse shape of
a2s the final model (Figure 5(a)(b)). We use the same implementa-
a29 tion described in [6], in which the authors introduce a new rep-
o resentation for implicit surfaces, HRBF, and show how it can be
aa1 used to support a collection of free-form modeling operations.



After we obtain our implicit surface =, we create the mani-
ass fold structure to represent our final model S. To handle param-
s34 eters, we use an atlas A of S, ie., A = {Qi,¢,-}f=0 such that
s Q; ¢ R?, and ¢; : Q; — S are homeomorphisms [33]. How-
ass ever, we have an implicit surface without information about the
a7 atlas. One possible way to tackle this problem could be to create
xs a polygon mesh and use one method to obtain a quad mesh [34].
a0 There are many approaches to polygonize implicit surfaces, e.g.
a0 [35, 36, 37], but to find the correct topology these approaches
a1 depend on user-specified parameters [35, 36], or require differ-
a2 ential properties of the surface [37]. In addition, we require
ass interactive time and to obtain a good mesh from an implicit
as function is an expensive task. Apart from the topology issue,
as such methods neither guarantee mesh quality nor have a direct
as Way to build an atlas structure. As a result, we have opted to de-
a7 velop a method that is based on our problem and on the desired
as surface characteristics.

First of all, we observe that there are two different scales of
aso detail to be represented: the implicit surface (which is coarse)
st and the details (which are finer). The naive approach would be
as2 to use the finest scale of detail to define the mesh resolution.
sss However, there are two issues associated with this approach:
ass firstly, we do not know the finest scale a priori; and secondly,
ass if the details appear in a small area of the model, memory and
ass processing time will be wasted with a heavily refined mesh. To
as7 avoid these issues we adopted a dynamic adaptive mesh, the
ass semi-regular 4-8 mesh [2] because it enables control on where
ase the mesh is fine or coarse, by using a simple error function.
Returning to the problem of parametrization of our implicit
ss1 surface, now we wish for more than just a mesh: we need an
a2 adaptive mesh. The framework presented by [24] starts with a
ass 4-8 mesh and refines it to approximate surfaces using simple
ss« projection and error functions. To obtain a good approxima-
ses tion of the final surface, the 4-8-base-mesh must have the same
ass topology and must approximate the geometry of the final sur-
a7 face. Thereupon our parametrization problem was reduced to
aes the problems of how to find a good 4-8 base mesh and how to
ase construct a good error function.

The parametrization of the implicit surface is built in three
ant parts: base mesh (Figure 5(b)), atlas (Figure 5(c)), and 4-8 mesh
a2 (Figure 5(e)). In Section 5.2 we present a base mesh with two
a3 roles in our system: inducing an atlas for the surface and creat-
ar ing a 4-8 mesh. We describe a method in Section 5.3 to create
a7s an atlas for adaptive meshes based on stellar operators. In Sec-
aze tion 5.4 we discuss how build an error function for the 4-8 mesh
a77 that is sensitive to levels of detail (LoD).
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a8 5.2. Base Mesh

The base mesh is the first step to parametrize our surface.
a0 This is a crucial piece of our pipeline, because three impor-
as1 tant aspects of the final model depend on the base mesh: the
as2 topology of the final model, the atlas, and the quality of the 4-8
ass mesh. In the context of sketch-based modeling, it is natural to
ass exploit user input to extract more information about the model
sss and create the base-mesh.

The user handles a simple unit of tessellation element (tesel)
a7 which can have the topology of a cube or a torus. This tesel
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ass 1S projected onto the drawing plane enabling its modification
ass to improve the geometric and topological approximation of the
a0 model by moving its vertices on the plane, by dividing it cre-
a1 ating one more tesel, or by changing its topology. Afterwards,
a2 the system creates a tessellation in the space by moving each
ass tesel vertex along the direction normal to the drawing plane.
ass Figure 6 shows the typical steps taken to create the base mesh:
ass the user starts with a bounding box of the sketched lines, then
s divides tesels, moves vertices, and changes tesel’s topology to
a7 build a better approximation of the intended shape. Our system
s defines vertex heights by searching along the normal direction
ase for a point on the implicit surface. Each quad face defines a
a00 chart; then this face is triangulated to be used as the 4-8 base
mesh.

wl

Figure 6: Creating a base-mesh for an implicit surface using the construct lines
described in Vital Brazil et al. [6]. Left to right, the first approximation, after a
user corrects the topology and improve the geometry, and the final result in R3.

401

a2 5.3. Atlas

403 We must construct an atlas to obtain the manifold structure
s0s for our model, i.e., a collection of charts ¢; formed by open
aws sets Q;  R?, and functions ¢; : Q; — S that are homeomor-
a6 phisms [33]. Specifically for this application, each chart of A
s07 18 associated with a height map, which is used to define a dis-
a0s placement along the normal direction. In Section 5.4 we use
a00 that height map to define an error function that helps to define
a0 the 4-8 refinement.

Figure 7 illustrates the steps to create an atlas for a 4-8
a1z mesh M. After the base mesh is obtained and each of its faces
a13 18 triangulated, one refinement step is performed and then each
12 base mesh face is associated with a chart (Figure 7(a)). When
15 the mesh is refined to better approximate the geometry, the at-
a16 las is updated and the user can draw curves over the M which
a7 are transported to the charts; these curves create or modify the
18 height maps (Figure 7(b)). If the mesh resolution is not enough
a19 to represent the desired details, M is refined. Usually that hap-
s20 pens when the user creates or modifies the height maps (Fig-
a1 ure 7(c)).

In Appendix A we discuss the main aspects of a vertex map
a2 and how to use it to create the atlas structure. In Appendix B we
424 describe how we use the vertex map to sketch over the surface
a25 creating the height map.

41
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a26 5.4. Using 4-8 Mesh

The 4-8 mesh M has two main roles in DASS system. The
a2 first one is to transport points to the atlas, as described in the
a20 previous section and in the appendices. The second role is to
a0 visualize the approximated final surface. In addition we need to
sa1 provide a function that samples an edge returning a new vertex,
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Figure 7: Steps to create an atlas: (a) The atlas is defined after one refinement
step of M. (b) M is refined and the user defines an augmentation sketching over
the surface, and the sketches are transported to (A to built a height map. (c) M
is refined to represent details of the final surface with height map.

a2 and two error functions: one to classify the edges for the refine-
s3s ment step and one to classify the vertices for the simplification
434 Step.
To define a new vertex we adopt the naive approach that
a3 projects the midpoint of an edge onto the surface: we split an
w7 edge e = {vy, v} creating a new vertex v, = Ilg ((vi +v»)/2);
ws and, as described in Appendix A, if v, € ¢; we save its local
a3 coordinates too. This simple technique achieves good results
a0 for our application.
We need to select which edges will be split, to refine the
mesh, and which vertices will be removed, to simplify the mesh.
In our implementation, this classification is done using two er-
ror functions and one parameter. To define our error functions
we need to describe how we measure the distance between a
point and the surface. First, observe that Ilz is the projection
on E # S, and so IIz is not enough to define the distance. To
project a point p onto S, first we project p onto Z, and then,
using the atlas information, we apply the displacement func-
tion D. More precisely,

435

s (p) = llz(p) @ DU=(p)), . (1)
The distance between p to S is the usual
ds(p) = Ip - s (p)l. @)

Now we can determine the error functions using the stochas-
a2 tic approach presented by [24]. We first define the error func-
a3 tion in faces by taking the average of the distance from the point
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s to n random points on the face. The error function on edges
ass and vertices is the average error on their respectively incident
s faces. To control mesh adaptation, we define an error threshold
w7 € > 0, and declare that if the edge error is above that threshold
s the edge should be refined. Observe that € controls the size of
e our final mesh. If € is small we have a good approximation of
ss0 the surface, but the mesh will have too many vertices, which is
ss1 computationally expensive (Figure 8(c)). On the other hand, if
ss2 £ 1s large, the mesh will be computationally cheap but the mesh
ass will not represent well the final surface details (Figure 8(b)).

(c) Simple error function, € = 1074, (d) Local error function, € = 1073,

Figure 8: Local error control.

It is natural to have an approximation for Z that is coarser
than for S. We are assuming that = is only the coarse informa-
tion, whereas S also has details (Figure 8(a) and (c)). However,
since details are typically restricted to small surface areas, if
we use S to choose £ we could have an expensive mesh without
adding any real benefit. Since our application works with two
different levels of details, it is natural to use this LoD structure
to define the error functions. In our representation the details
are encoded in D. We define the LoD at a point p as

E(p) = n(D(p)), 3

ssa where 7 : R — R,. We implement that using the height maps
sss since they are our details over the surface. Specifically, Equa-
ss6 tion (3) is rewritten as E(p) = max{2|Vh,|, 1}, where VA, is the
ss7 gradient of the height map evaluated in p.

458 Now we have all elements to define an error function based
sso on the level of detail at a point over the surface. We define the
ss0 local error function using Equations (2) and (3); so we have
w1 A(p) = ds(p)E(p). We apply this new definition in the face er-
se2 ror calculation and as result we reformulate the edge error and
sss the vertex error functions. In Figure 8 we can observe the dif-
sss ference between using the simple error function and using the
ass local error function. The mesh in Figure 8(b) has 460 vertices
ses but we lost the details of the final surface. If we decrease &
ss7 (Figure 8(c)) we reveal the details but the mesh grows ten fold
a8 to 4.8k vertices. When we use the local error function (Fig-
aso ure 8(d)) we reveal the details and the mesh size does not grow
a70 too much, only to 1.3k vertices.
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an 5.5. Work-flow and Results

Our work-flows are based on the presented by Goes et al. [24]
a73 to adaptive dynamic meshes. The DASS system has three dif-

a7a ferent work-flows: (1) the user starts the modeling system with

a7s a blank page, or changes the current model topology, (2) the

76 geometry of the implicit surface is changed, and (3) the mesh

477 resolution is recalculated (this usually happens when the height

478 maps are changed). Figure 9 shows an overview of the work-

flow.

472

Implicit
Base Surface

Move
Vertices

_}’\

; ﬁ Adapt
Base Mesh B Atlas ») Augmentation B a:_g_l:f::he

Figure 9: Overview of DASS system work-flows: green arrows are the startup
and topological change step sequence, blue arrow are stepped when the implicit
surface is edited, and the red arrow is done when the mesh resolution changes.
479
480 The user starts the modeling session by drawing construc-
ss1 tion curves, as described in [6]. Then, the system uses these

ss2 curves to create samples defining an implicit surface (Figure IO(a)s).

ssa After that, the user creates a planar version of the base mesh that
ss4 approximates the geometry and has the same topology of the fi-
45 nal model (Figure 10(b)). Thus, the base mesh is transported to
ass 3D space (Figure 10(c)). Then, the base mesh is used to create
a7 an atlas structure (Figure 10(d)) for a 4-8 mesh. This mesh is
sss refined creating the first approximation of the final model (Fig-
aso ure 10(e)). The steps described up to now are the common steps
as0 for all modeling sessions. They are represented by the green ar-
o1 rows in Figure 9. These steps also are illustrated in Figure 11(a)
a2 and (b), and 12(a). When we change the topology we also need
ass to change the base mesh, restarting the process, as illustrated in
s0a Figure 11(a) and (b). If there is a predefined height map, the
sss model reaches the end of this stage with one or more layers of
a9s detail. For example, in Figure 13(a) we start the model with a
47 height map encoded as a gray image.

After the first approximation for the final surface, the user
s can modify the implicit surface and create or modify a height
so0 map. When details are added on the surface, in almost all cases
so1 this implies that the resolution of the mesh is not fine enough
s2 to represent the new augmentation. In this case, we must adapt
sos and refine the mesh. In Figures 10(f), 11(c), 12(b), and 13(b):
s the user sketches a height map over the surface and the mesh is
sos refined to represent the geometry of the augmentation correctly.
ss The user can change the implicit surface at any stage, and if
so7 the topology is still the same, the system allows vertices to be
sos moved without adaptation and refinement (in order to obtain a
s00 fast approximation). Since details are codified separately, they
s10 are moved consistently when implicit surfaces are modified.
st1 We illustrate that in Figures 10(g) 13(c), and 12(c), (e) and (f).
si2 Specifically, in Figure 12(e) and (f) we can compare good final
s results preserving the details despite the significant changes of
s the implicit surface. Sometimes, when only the implicit surface
s1s 1S changed, moving the vertices alone is not enough to reach the
s1e desired quality. In such cases, the user can adapt and refine the
si7 mesh decreasing the error threshold, as shown in Figure 12(d).

498

sis Here, the user initializes £ = 1073, and after some modeling
s19 steps, a new threshold of 10~* is chosen.

The modeling session of each model took approximately 10
se1 minutes, from the blank page stage up to the final mesh genera-
s22 tion. All the results were generated on an 2.66 GHz Intel Xeon
s22 W3520, 12 gigabyte of RAM and OpenGL/nVIDIA GForce
sea GTX 470 graphics. The most expensive step was to create the
s2s implicit surface, followed by the creation of the base mesh; on
s2s the other hand, processing of the augmentation and minor ad-
s27 justments in the implicit surface had a minor impact on perfor-
s2s mance. The bottleneck is the mesh update: if the mesh has too
s2o many vertices (around 10k), one refinement step after an aug-
s0 mentation takes about 10 seconds. The final models of space
sa1 car, terrain, head, and party balloon have 10k, 11k, 7k and 13k
sz vertices respectively.

520

s 6. Geological Layer Modeler (GLaM)

We developed a sketch-based system for seismic interpreta-
sss tion and reservoir modeling (Figures 14) based on the frame-
ss work presented in Section 4. Most of the existing tools for
seismic interpretation rely on the automatic extraction of hori-
e zons (interfaces between two rock layers) using segmentation
s0 algorithms. However, seismic data have a high level of uncer-
se0 tainty and noise which leads to mistakes in the horizon extrac-
s« tion. The main objective of the GLaM system is to enable the
se2 experts to directly interpret the geology using their knowledge
ss and fix problems coming from an automatic extraction. The
s« GLaM system enables augmenting, editing, and creating geo-
sss logical horizons using sketch-based operators. We have a seis-
ss6 mic reflection volume, a distance volume (computed from the
se7 seismic volume), and a complete horizon candidate given as in-
si8 put to our system.

534

537

Figure 14: GLaM system interface.

Following our proposed framework (Section 4), the GLaM
sso System has an initial shape descriptor and rules to change the
ss1 adaptive mesh to follow the user’s sketches. Compared to the
ss2 DASS system, the initial shape descriptor is simple. According
sss to our framework, the initial shape descriptor must be able to
ss4 tessellate the base mesh that will be used as a first approxima-
sss tion of the model. In the GLaM system, there are three different
sss ways of creating a horizon: (1) from an input horizon candidate,
ss7 (2) from user-specified lines that define boundaries of the hori-
sss zon, or (3) from a combination of two existing horizons. Thus,

7
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Figure 10: Steps to model a head using DASS.

Figure 11: Steps to model a space car using DASS.



Figure 12: Steps to model a terrain using DASS.

(a)

(b)

Figure 13: Steps to model a party balloon using DASS.




sss we have three possible initial shape descriptors which are, in
se0 our case, 2D parametric representations. The Initial shape de-
st scriptor of (1) is a heightmap extracted from the input triangle
sz soup; of (2) is a Coons Surface [38], and of (3) is a convex sum
ses Of two horizons. The base mesh can be easily constructed as
se+ a rectangle from the extremities of these 2D parametric initial
ses shape descriptors.

Base meshes are sculpted into a final mesh through opera-
se7 tors that define the rules of adaptation and refinement of the 4-8
sss mesh. These operators are based on the initial shape descriptors
seo or are sketch-based. The sketch-based operators of the GLaM
s system are good examples of the flexibility of surface repre-
s71 sentations as proposed in our framework. Each sketch-based
s72 operator is implemented independently and can have its own
s73 internal representation. To perform their deformations, each
s74 operator modifies its internal representation and provides rules
s7s to adapt and manipulate the 4-8 meshes. Besides the mesh, op-
s76 erators have different inputs such as filtered information from
s77 keyboard and mouse containing which surface and face (trian-
s7s gle) have been clicked. The GLaM system enables the com-
s7 bination of different operators to create more complex ones.
ss0 For instance, a refinement of the mesh may be necessary by
se1 several different operators. Instead of implementing the same
se2 refinement for all operators, a refinement operator can be im-
sss plemented and composed with the others.

584 Since the main purpose of this paper is to discuss the pro-
ses posed framework we will not give many details about each im-
ses plemented operator. All technical details of the system can be
se7 found in [39]. Following, we overview the main operators of
sss the GLaM prototype to illustrate better the versatility of the pro-
see posed framework.

566

e Topology Repair Operator enables the user to create or
delete holes on the horizons by texture manipulation. This
operator is a good example of combination of simple op-
erators, the first allows for the users modify hole texture
using brushes like an image, after they are satisfied with
the result other two operators are used, one to refine the
mesh around the holes and other to remove the vertex
creating the final mesh with the desired topology (Fig-
ures 15).

590
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592

593

594

595

596

597

Figure 15: Topology repair operator. Left to right: original mesh, after hole
texture edition, and final mesh.

o Feature Augmentation and Horizon Fault Deformation
Operators create deformations using a set of sketched
curves. These operators deform only the selected area

602 using a parametric representation based on the distance

to strokes to create final effects. The main differences be-
tween them are the meaning of the lines and the Horizon
Fault operator changes the mesh topology (Figures 16).

~=

Figure 16: Left: Feature Augmentation and right: Horizon Fault Deformation.

603

604

605

o Magnetic Operator is an operator created to improve a
common task in traditional horizon extracting work flow,
where the experts select a voxel to be used as a seed in
a growing segmentation algorithm, resulting in a horizon
patch. The magnetic operator uses a pre-segmented vol-
ume to snap a hole to the closest horizon patches, having
the meaning of many seeds placed at the same time (Fig-
ures 17).

606

607

608

Figure 17: Magnetic Operator with the pre-segmented volume.

613

e Horizon Convex Sum and Coons Surface Operators cre-
ate new surfaces inside the seismic volume. The first one
uses 2 others horizons to create one between them. The
latter allows the expert to draw strokes on the seismic
data then it uses that to create a Coons surface following
the sketches (Figures 18).

614

615

616

617

618

Figure 18: Left:Horizon convex sum creates the surface at middle. Right:
strokes and final coons surface.

619

620 It is important to remark that each of the presented opera-
e21 tors has its own internal representation, such as Coons patch,
e22 RBF implicit, and height map. This flexibility along with the
e2s proposed framework enables us to build this system following
e24 the expert’s desiderata. Moreover, the GLaM system received
e2s positive feedback from our collaborators in the reservoir mod-

e2s eling domain. The main observations were the usefulness of

10



e27 the horizon fault deformation operator and the magnetic and
e2s smooth operators combined. Some improvements were also
e20 suggested specially for better fault modeling and navigation.
e It is important to note that GLaM is an illustrative example of
et how the proposed framework can be used to create different
ez sketch-based applications.

e33 7. Conclusion and Future Work

We have presented two sketch-based systems to illustrate
ess the flexibility of our framework. The adaptive mesh plays a
eas central hole in this framework enabling rapid updates with local
es7 control. This work opens many interesting venues. One of the
e3s natural next steps is to use the framework in different domains
ea9 and applications.

DASS system leaves many interesting open questions. One
e+t important example of a problem that demands further research
es2 18 the base mesh. For instance, we implemented a semi-automatic
ess approach in which the user places the vertices to approximate
es the geometry and topology, followed by the base mesh creation
ess in the space. This approach achieves good results, but it only
ess allows us to work in a single plane. Since the base mesh is re-
e7 sponsible for the topology of the final model, we are restricted
ess t0 topologies that can be handled in one plane. We plan to ex-
es9 plore two approaches for the base mesh problem. Firstly, we
eso intend to transport the actual semi-automatic solution to 3D,
est letting the user handle boxes directly in space. The main chal-
es2 lenge of this approach is developing an effective interface. The
ess other approach is to use a mesh simplification, for instance the
s« method presented by Daniels et al. [40]. Although this approach
ess 1S automatic, it starts with a dense mesh; we must then exchange
ess the problem of how to find a base mesh for the problem of how
es7 to create a mesh with the correct topology.

658 We developed a theory to construct atlas which is respon-
ese sible to control the local edition of the model. The label the-
0 ory developed gives a constructive algorithm with guarantees
es1 to create a partition over the set of faces enabling an atlas struc-
es2 ture for stellar adaptive meshes. However, there is much more
ess to be done in this problem. We aim to develop tools (mathe-
s« matical and computational) to handle the scale of the atlas, an
ess interface to control predefined height maps, and algorithms to
ess split the atlas if it has a high level of deformation in relation to
es7 the surface.

634
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o7 Appendix A. Building Atlas

678 In this Section we construct the theoretical framework to
e79 build an atlas using a label function over the vertices of a mesh.
es0 We work with a general description of adaptive surfaces, based
es1 on stellar subdivision grammars [23]. Our choice of parametric
es2 representation, the 4-8 mesh developed by Velho [2], is an ex-
ess ample of application of this grammar. The atlas defined using
ess vertices of the mesh has the following advantages: it is compact
ess and simple; it naturally classifies edges as inner and boundary;
ess and it is suitable to work with dynamic adaptive meshes.

67 Appendix A.l. Vertex-Map

As aforementioned we need an adaptive mesh to represent
eso the high-frequency details. However, when we do one refine-
e ment step in a mesh, new elements (vertices, edges, faces) are
eo1 created; then, we need to update the atlas. We propose a solu-
ee2 tion to construct and update an atlas using the natural structure
ees Of adaptive surfaces, using a simple label scheme for 4-8 mesh.
e« Each vertex is labeled as inner vertex of a specific chart or as a
ess boundary; that means if we have N charts there are N + 1 pos-
ess sible labels. The 4 — 8 mesh uses stellar operators (Figure 2),
se7 subsequently, we developed rules to update the atlas when these
e9s Operators are used.

First of all we formalize the concept of the regular labeled
700 mesh. After that we use these definitions to build an atlas with
701 guarantees for adaptive surfaces that uses stellar subdivision op-
702 €rators.

688

699

70s Definition 1. A mesh M = (V, E, F) is k-labeled if each vertex
704 v € V has a label L(v) € {0,1,2...,k}, i.e., if thereis L : V —
705 {0,1,2...,k}. Lis called k-label function. If L(v) = i # 0, then
706 V is an inner-vertex of the chart ¢;; if i = 0, v is a boundary-
707 VErtex.

708 Definition 2. A face f € M, is regular k-labeled or rk-face
709 if there is v € f with L(v) # 0 and ¥V v|,vy € f such that
7o L(vy) # 0 # L(vp) = L(vy) = L(v2). A mesh is regular k-labeled
m (or rk-mesh) when all their faces are rk-faces. The function
neL 1V — {0,1,2...,k} that produces a rk-mesh is called a
713 regular k-label or rk-label.

Observe that an edge in a regular k-labeled mesh has ver-
715 tices with the same label or one of them has label 0. If the edge
76 has at least one vertex v such that L(v) = i # 0; we call it an
77 inner-edge of the chart ¢; or L(e) = i; if it has the two vertices
7e labeled as zero it is a boundary-edge or L(e) = 0.

714

79 Proposition 3. A regular k-label function induces a partition
720 on the set of faces.

Proof. Let M = (V,E, F) be a rk-mesh. Define the set F; =
{f € Fl| 3 v € fsuchthat L(v) = i}, i € {1,2,...,k}. By
definition 2 every f € F has at least one v with L(v) # O then:

k

Jri-

i=1

F»
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and if there is more than one v € f such that L(v) # O then
all such vertices will have the same value of L, i.e., the face
belongs to only one F;, so we conclude:

FinFj=o if i # .

O

721

This proposition allows us to define a collection of charts
723 over a rk-meshes. We say that a face f is in the chart ¢; (L(f) =
724 1) if there is at least one v € f such that L(v) = i. However for
725 our application it is not enough to have a static map because our
726 mesh is adaptive. Hence we need rules to assign a L value to
727 the new vertices created by the refinement step.

We study how to update the atlas after applying one of the
720 stellar operators described in Section 3: i.e., edge and face split,
750 and their inverse edge face weld (Figure 2). Observe that, the
7a1 stellar subdivision operators (split) add only one vertex, thus to
72 update the atlas we only need rules to label the new vertex v,,.

722

728

e Face Split — when the face f is split we define:

L(va) = L(f) (A.D

o Edge Split — when the edge e is split we define:

L(v,) = L(e) (A2)
s Proposition 4. A stellar subdivision step using the previous
73 rules on a rk-mesh M produces M’ that is a rk-mesh too.

7s Proof. First, case we split a face f we create a new vertex v,
76 and 3 news faces (fi, f2, f3), since M is a rk-mesh the equa-
77 tion (A.1) is well defined and L(v,) = i # 0. To proof that
7 f1, fr, f3 are rk-faces, we observe that v, € fj N f> N f3 then they
73 have at least v,, with L(v,) # 0. And, since f is a rk-face for all
#0v € f, L(v)is O or i, and for j = {1,2,3},v e f; & v =y, or
v € f, weconclude if v € fj = L(v) = 0or L(v) = i,1i.e, fjisa
2 rk-face.

743 The edge split creates four new faces f;, j = 1,2,3,4. Note
744 that the operator edge split subdivides two faces. Lets name
s these faces west-face (f*) and east-face (f°); and their opposite
s Vertex as v, and v,, respectively. i.e., v. € f* and v, ¢ e.

77 If e is an inner-edge then for at least one of its vertices
7 L(v) =1 # 0. Since eisin f" and f¢ we have L(f") = L(f¢) =i
79 it implies thatif v € YU f* then L(v) = i or L(v) = 0. As aresult
70 when we split a inner-edge we have L(v,) = i and v, € (; f;
mandv € fj = v e YU f¢orv=v,, then f;is a rk-face.

If e is a boundary-edge and f* and f* are rk-faces t L(v,) #
73 0 and L(v,,) # 0. Since v,, € fj or v, € f; we have one v € f;
7s4 such that L(v) # 0, then we conclude that f; is rk-face. ]

752

755 The simplification step of an adaptive mesh is very impor-

75 tant to our application, because when the user changes the sketches

757 the mesh is dynamically updated that implies that the two steps
7ss (refinement and simplification) are done. Starting with a rk-
75 mesh (level 0) and perform n refinement steps, then to any
70 m < n simplification steps we have a rk-mesh. It is easy to
761 see because when a refinement step is done we do not change

72 the value of the vertices of the current level j, thus when we
763 do the inverse operator to simplify only vertices of level j + 1
764 are deleted so then the L function over faces is well defined in
765 level ]

766 To create a rk-mesh using our base-mesh, i.e., to create the
77 Mo, we label all vertices of the base-mesh as boundary (L(v) =
78 0) and split each face, the new vertex added is labeled with a
760 new value not 0. After that each face of the base-mesh generates
770 @ new chart into the atlas, i.e., if the base mesh has k faces the
771 atlas has k charts. In Figure A.19 we illustrate the process to
772 create a mesh M, that is a r2-mesh and three refinement steps.

Figure A.19: Creating a r2-mesh and refinements. Left to right: the base-mesh,
My which is r2-mesh, and after 3 refinement steps: M3. Black elements are
boundary (L(-) = 0), blue elements are into chart ¢; (L(-) = 1), and red elements
are into chart ¢y (L(-) = 2).

73 Appendix A.2. Creating a Manifold Structure

Now we have a partition over the surface and we know how
775 to refine and simplify the mesh respecting this partition. How-
776 ever, we do not have all elements of an atlas, we need to define
777 open sets €; and homeomorphisms ¢;. First of all, we overload
778 the notation for chart; ¢; € A has two meanings, the first one is
779 a set of faces, edges and vertices, used in previous section. The
700 second one is the parametric space [0, 1]> ¢ €;; more precisely,
781 we say a point of M belongs to a chart ¢; if we can write this
782 points in ; coordinates and its coordinates are in [0, 11%. At
783 this point all vertices v of M have at least two geometrical in-
78« formation, its coordinates in R and, its coordinates in at least
7es one ;. The notation V' is used to be clear when we are using
786 v in coordinates of Q;, how to recover this information we will
7e7 discuss later. We start an atlas setting the four vertices of the
788 base-mesh face f; = {v{, v, v3, v4} to be the boundary of ¢;, i.e.,
780 the local coordinates in €; of these vertices are: v’i = (0,0),
70 vy = (1,0), vy = (1, 1), v, = (0, 1).
Since M is an adaptive mesh and now it has two geometrical
792 aspects, its coordinates in R3 and in A, we need rules to update
703 this information. When we split an edge e = {v|,v,} we get
7o its middle point v,, and project it on S and if e € ¢; then v/, =
75 (Vi + v4)/2. A projection Il (p) of a point p on a surface S is
76 well defined if it is in the tubular neighborhood of §. We are
707 assuming that I[Tg is well defined for all points on a edge in M.
7ee That is true when the vertices of the base mesh start close to S .
To build the homeomorphisms we also will use the I1,(p),
the projection of p € S on M, and again we are supposing
that the mesh approximates well the surface. If a point p' € ¢;
then there is a face f' = {v|,v},v4} such that p’ is a convex
combination of its vertices. More precisely p' = 22:1 akvjc with
a; >0, Y3, a; = 1. So then we define:

3
¢i(p') =Tls (Z ak¢i(V§<)]~
=1
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Specifically when we split an edge e, which belongs to ¢;, e =
{v', v} we have:

¢i(v)) + ¢i(vé)]. (A3)

¢:i(0Vh) = T ( >

79

©

Proposition 5. For alli, jandv € V such thatv € c; and v € c;
holds ¢;:(v') = ¢;(v/).

Proof. We proof that proposition by induction in all levels of
refinement of M. When we start the charts ¢; and c; all edges
that are in their boundary belongs to the base mesh, if v € ¢; and
v € ¢; then ¢;(v) = Tl (v) = ¢;(»/), by construction. Now sup-
pose the Proposition 5 is true for all v with level less or equal
the current level. Observe that by (A.1) and (A.2) a boundary
vertex v is created only when a boundary edge is split, conse-
quently by (A.3) and induction hypothesis holds:

¢:i(v) + ¢i(VQ))

80

S

2

=TI, (—qﬁj(v{) er ¢j(vé)] = ¢;0).

¢:(v") =Ils (

O

801

To define the inverse of ¢; we use the projection II,, the
idea is to project the point on the mesh, identify which face
it is projected and use the barycentric coordinates to define it
coordinates in Q;. More precisely, let ITy,(p) = Zizl vy, with
ay > 0, Y7_ ax = Land f = {v;,v2,v3} where L(f) = i, then
we have:

3
67 (p) = ) aw, (A4)
k=1

s Since we are supposing that M is close to S we have ¢ and ¢!
ws well defined, i.e., ¢; o ¢ (p) = p and ¢! o ¢;(p') = p' for all
se p €S Ngi(c;)and p' € ;.

805 To build the height maps consistently we need to know how
a6 t0 Write inner-points of ¢; in Q; coordinates when ¢; and ¢; are
so7 neighbors, i.e., we need be able to write a point p' € ¢; in Q;
ws coordinates when ¢; and c¢; have common vertices. Since we
so0 Started our chart with quadrangle domains we use the approach
s1o develop by Stam [41] to convert p’ to p/. The author recovers
s the relative affine coordinates of Q; to Q;, he achieves that by
sz matching commons edges of ¢; and c;.

sis Appendix B. Sketching over the Surface

To enable the users to augment the model we freeze the
s1s camera and they draw polygonal curves over the surface. These
s16 strokes are transported to atlas A where they are used to de-
s17 fine the height map, we name these projected curves as height
a1s curves. To transport the curves to A we project the curve points
s19 directly on M, identifying which face they were project, and use
s20 their barycentric coordinates to transport them to the correspon-
e21 dent ¢;. If the line segment pgq starts in the chart ¢; and ends in
ez the chart c; then to guarantee continuity we write p'q’ and find

814

s23 its point that is over the boundary of ¢; and add this point to
s2¢ the height-curve. We do the same thing to the segment p’/g’/. In
s2s Figure B.20 we show the result of this process.

Figure B.20: Sketch over surface and the curve transported to A. The two
solid arrows show points on M that are transported to (A, the dashed arrow
shows points that are created in the chart boundaries to guarantee hight-curve
continuity.

826 After all, we have a height map h,i for each chart ¢; that can
s27 be sketched by the user. We can compose this height map with
s2s another, such as a gray depth image 4, for example to obtain a
a0 final height at p € M adding the heights, k, = h\(p’) + hi,(p").
s0 Then, we have D(p) = h,N, where N, is it normal at p. Thus
ss1 we complete the formulation of the final surface: S = E+ D(E);
ss2 specifically, for all p € M we have p = p + h,N,,.
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